\square

Code: 19AC44T

\square
II B.Tech. II Semester Supplementary Examinations November 2023

Life Sciences for Engineers

(Common to EEE \& ECE)

Max. Marks: 70 Time: 3 Hours
UNIT-I1. a) Explain the hierarchy of classification?7M CO12
b) Describe is Ribosomes? Write their structure and important functions and draw the labelled diagram? 7M CO1 2
OR
2. Describe meant by classification? Write the importance of Classification? 14M CO1 2
UNIT-II
3. Describe nucleic acids? Write the structure and functions of nucleic acids? $14 \mathrm{M} \quad \mathrm{CO} 2$ 2
OR
4. Describe the Biomolecules and write functions and types of biomolecules? 14M CO2 4
UNIT-III5. Explain the reaction of Krebs/TCA cycle?14M CO32
OR6. Describe the structure of neuron and types? Give an account of theSynaptic and neuromuscular junctions?
14M CO3 47. Describe the meiosis cell division process?14M C0428. Explain the Process of DNA Replication in prokaryotic and eukaryoticanimals?14M C042
UNIT-V
9. Explain the Transgenic species and process in animals? 14M CO5 2
ORExplain the various process of recombinant DNA technology?14M CO52

Hall Ticket Number :

Code: 19AC42T

II B.Tech. II Semester Supplementary Examinations November 2023

Numerical Methods and Transform Techniques

(Common to EEE \&ECE)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

Marks CO BL

1. Estimate the value of $f(22)$ and $f(42)$ from the following data

x	20	25	30	35	40	45
$f(x)$	354	332	291	$26-$	231	204

OR
2. a) Find the real root of $x \log _{10} x=1.2$ using False position Method

7M CO1 L3
b) Using lagrange's interpolation formula find y at $\mathrm{x}=10$ given that

x	5	6	9	11
y	12	13	14	16

7M CO1 L3
3. a) Compute $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ at $\mathrm{x}=1$ from the following data.

x	1	2	3	4	5	6
y	1	8	27	64	125	216

7 M CO2 L3
b) Solve $\frac{d y}{d x}=x+y^{2}, y(1)=0$ to find y at $\mathrm{x}=0.2$ by Runge-Kutta method of fourth order.

7M CO2 L3

OR

4. a) Estimate $\int_{0}^{1} \frac{1}{1+x^{2}} d x$ by using Simpon's $1 / 3$ rule

7M CO2 L2
b) Solve $y^{\prime}=3 x+y^{2}, y(0)=1$ using Taylor's series method and compute $y(0.1) \quad 7 \mathrm{M} \quad \mathrm{CO} 2 \quad \mathrm{~L} 3$

UNIT-III

5. a) Find the Laurent series expansion of the function

$$
f(z)=\frac{z^{2}-6 z-1}{(z-1)(z-3)(z+2)} \text { in the region } 3<|z+2|<5
$$

$7 \mathrm{M} \quad \mathrm{CO} 3 \quad \mathrm{~L} 4$
b) Find the residues of $f(z)=\frac{z^{2}-2 z}{(z+1)^{2}\left(z^{2}+1\right)}$ at each pole

7M CO3 L1
OR
6. Find the Laurent series of $f(z)=\frac{z+3}{z\left(z^{2}-z-2\right)}$ in the region i) $|z|<1$, ii) $1<|z|<2$ iii) $|z|>2$

14M CO3 L4

UNIT-IV

7. Find the Fourier transform of $e^{-a^{2} x^{2}}, a<0$.Hence deduce that $e^{\frac{-x^{2}}{2}}$ is self reciprocal in respect of Fourier transform.

OR

8. a) Find the Fourier sine transform of $2 e^{-5 x}+5 e^{-2 x}$
b) Find the Fourier cosine transform of $f(x)=\left\{\begin{array}{l}x, 0<x<1 \\ 2-x, 1<x<2 \\ 0, x \geq 2\end{array}\right.$

7M CO4 L1

7M CO4 L1

UNIT-V

9. Find inverse Z transform of $\frac{2 z^{2}+3 z}{(z+2)(z-4)}$

OR

10. a) Find $Z\left(n^{2} a^{n}\right)$ 7M CO5 L1
b) Find $Z\left(e^{t} \sin 2 t\right)$ $7 \mathrm{M} \mathrm{CO5}$ L1

Hall Ticket Number :

Code: 19A443T

R-19

II B.Tech. II Semester Supplementary Examinations November 2023
Analog Communication Systems
(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)
Marks co BL

UNIT-I

1. a) Explain the principle of envelope detection of an amplitude modulated wave.
b) Explain the principle of operation of Costas loop with a neat diagram?

7M 12
7M 12
2. Describe the working principle of Generation and Detection methods of VSB. $\quad 14 \mathrm{M} \quad 1 \quad 2$

UNIT-II

3. a) Explain the Armstrong method of FM generation.

8M 22
b) Compare between NBFM and WBFM.

6M 25

OR

4. a) Explain the generation of Narrow band Frequency Modulation with suitable block diagram.

8M 22
b) Determine the expression for Transmission bandwidth of FM Wave. 6M $\quad 2 \quad 3$

UNIT-III

5. a) Show that both AM-DSB-SC and AM-SSB-SC are of same noise performance $\quad 7 \mathrm{M} \quad 3 \quad 3$
b) Discuss the role of pre-emphasis and de-emphasis. Derive the transfer functions of these two circuits.

7M $3 \quad 2$

OR

6. a) The noise performance of a conventional AM with envelope detector is always inferior to that of a DSB-SC receiver. Justify in-terms of figure of merit.
$8 \mathrm{M} \quad 3 \quad 5$
b) Describe the filtering process of pre-emphasis and de-emphasis circuits. $\quad 6 \mathrm{M} \quad 3 \quad 2$
7. a) Explain the principle of operation of super heterodyne receiver. $8 \mathrm{~B} \quad 4 \quad 2$
b) List out the performance parameters of radio receivers in detail. $6 \mathrm{CM} \quad 4 \quad 1$

OR

8. a) Classify the radio Receivers based on type of modulation and service involved. $\quad 7 \mathrm{M} \quad 4 \quad 4$
b) Explain the effect of Image frequency on voice communication. $\quad 7 \mathrm{M} \quad 4 \quad 2$

UNIT-V

9. a) Describe with suitable circuit, the scheme of generation of PPM signals.

7M $5 \quad 2$
b) Discuss about the concept of Time Division Multiplexing? 7M $\quad 5 \quad 2$

OR
10. a) Describe with suitable method of generation of PWM and PPM signal.

8M $5 \quad 2$
b) Classify various types of sampling schemes with neat sketches.

6M 54

Time: 3 Hours
Max. Marks: 70
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Summarize the advantages and applications of Gauss law?
b) Analyze the relation between E and V

OR
2. Contrast following with expression.
a) Coulomb's law.
b) Gauss law.
14M CO1 L2

UNIT-II

3. Derive the capacitance in Parallel Plate Capacitors

OR
4. a) Identify the convection and conduction currents 7M CO2 L1
b) Explain the properties of materials and Dielectric Constant \& strength
$7 \mathrm{M} \mathrm{CO2}$ L2

UNIT-III

5. a) Explain the Forces due to Magnetic Fields $\quad 7 \mathrm{M} \quad \mathrm{CO} \quad \mathrm{L} 2$
b) Elaborate magnetic flux density $\quad 7 \mathrm{M}$ CO3 L2

OR
6. a) Differentiate between electric and magnetic fields
$7 \mathrm{M} \quad \mathrm{CO} 3 \quad \mathrm{~L} 4$
b) List the applications of amperes law and explain any one of it $\quad 7 \mathrm{M} \quad \mathrm{CO} \quad \mathrm{L} 1$

UNIT-IV
7. Summarize waves in general with neat wave diagrams $14 \mathrm{M} \quad \mathrm{CO} 4 \quad \mathrm{~L} 2$

OR
8. With a neat diagram illustrate the concept of Poynting theorem and Poynting vector

14M CO4 L4

UNIT-V

9. Derive Condition for Distortion less ness and Minimum Attenuation $14 \mathrm{M} \quad$ CO5 L3

OR
10. a) Discuss on Short Circuit (SC) and Open circuit (OC) Lines

7 M CO5 L2
b) Define Standing wave and how it produces in transmission lines

7 M CO5 L2

