Hall Ticket Number :							
• • • • • • • • • • • • • • • • • • • •						R-19	

Code: 19A545T

II B.Tech. II Semester Supplementary Examinations April 2023

Operating Systems

(Computer Science and Engineering)

		(Comporer science and Engineering)			
			ne: 3 H		
5	An	swer any five full questions by choosing one question from each unit (5x14 = ***********************************	= 70 M	arks)	
		*****	Marks	СО	BL
<u>.</u>		UNIT-I	IVIAIKS	CO	DL
1	۵)		7M	CO1	1.4
; I.	a)	What is the purpose of an operating system? What are its design goals?	/ IVI	CO1	L1
	b)	What are the essential properties of the batch, real-time, and distributed		004	
) ;		operating system?	7M	CO1	L1
-		OR			
2.	a)	What is the purpose of interrupting? What are the differences between a trap			
-		and an interrupt?	7M	CO1	L4
<u> </u>	b)	What is distributed system? Explain with a neat diagram, how it is different			
		from a computer network?	7M	CO1	L4
) -		UNIT-II			
3.	a)	Provide two programming examples in which multithreading does <i>not</i> provide			
	,	better performance than a single-threaded solution.	7M	CO2	L5
2	b)	Discuss in detail threading Issues?	7M	CO2	L2
5	/	OR		-	
. 1	٥)	Identify the Importance of Atomic transactions in executing critical sections?	7M	CO2	L3
) 1 .	a)	·			
5	b)	Show that the two-phase locking protocol ensures conflict serializability?	7M	CO2	L4
2		UNIT-III			
5.	a)	Explain different Contiguous Memory allocation strategies with a neat diagram?	7M	CO3	L2
)	b)	Describe the parameters to be considered for evaluating a memory management			
5		strategy?	7M	CO3	L4
<u>)</u>		OR			
6.	a)	What is the optimistic assumption made in the deadlock-detection algorithm?			
		How can this assumption be violated?	6M	CO3	L4
	b)	Explain the use of a resource allocation graph in detecting deadlocks with a			
5	,	suitable example?	8M	CO3	L3
5		UNIT-IV			
"	a)	What are points to be considered in file system design? Explain the following			
	u)	file allocation methods (i) Contiguous allocation (ii) i-node.	8M	CO4	L2
2	b)	Why must the bit map for file allocation be kept on mass storage, rather than in			
	D)	main memory?	6M	CO4	L2
i		OR	Oivi	001	
0	۵)		71.4	004	1.0
0.	a)	What is Mounting? Describe file system mounting with a neat diagram?	7M	CO4	L3
	b)	What is Directory? List and explain Directory implementation methods with a	71.4	004	
		neat diagram?	7M	CO4	L2
		UNIT-V			
9.	a)	Discuss the strengths and weaknesses of implementing an access matrix			
		using access lists that are associated with objects?	7M	CO5	L2
	b)	Write a short note on the Revocation of access rights?	7M	CO5	L1
		OR			
10.	a)	How are the access-matrix facility and the role-based access-control facility			
		similar? How do they differ?	7M	CO5	L4

b) Explain about domains of protection?

CO₅

L3

0 L 404 G42T	J					1	R-19	
Hall Ticket Number :								_

Code: 19AC43T

II B.Tech. II Semester Supplementary Examinations April 2023

Probability & Statistics

(Computer Science and Engineering)

Max. Marks: 70 Time: 3 Hours

Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)

UNIT-I

1. Define median and mode. Discuss their relative merits and demerits. CO₁ L2 14M

2. Find the mean, median and mode for the following:

			UNIT-II			
No of articles	14	17	22	26	23	18
Weight(in gm	0-10	10-20	20-30	30-40	40-50	50-60

If two dice are throw, Find the probability of getting a sum is 10 3.

14M CO₂ L2

CO1

CO

Marks

14M

BL

L2

4. Let the phase error in a tracking device have probability density

 $f(x) = \cos x , 0 < x < \pi/2$

, elsewhere

find the probability that the (i) between 0 and $\pi/4$ (ii) greater than $\pi/3$

14M CO₂ L₃

UNIT-III

5. In a large consignment of electric bulbs 10% are defective. A random sample of 20 is taken for inspection. Find the probability that (i) All are good bulbs.

(ii) At most there are three defective bulbs. (iii) Exactly there are three defective bulbs

14M CO3 L2

OR

6. If X is a normal variate with mean 30 and S.D. 5, find the probabilities that (i)

26 < X < 40 (ii) X > 45

14M CO3 L3

UNIT-IV

7. A random sample of size 81 taken whose variance is 20.25 and mean is 32, construct 98% confidence interval

14M CO4

OR

8. In a city A 20% of a random sample of 900 school boys had a certain slight physical defect. In another city B, 18.5% of a random sample of 1600 school boys had the same defect. Is the difference between the proportions significant at 0.05 level of significance?

14M CO4 L4

UNIT-V

9. Two random samples gave the following data size mean Variance

	Sample size	Mean	variance
Sample I	8	9.6	1.2
Sample II	11	16.5	2.5

Is the difference between means significant?

14M CO4 L4

OR

10. Random samples from two normal populations are given below.

Sample1	16	26	27	23	24	22
Sample2	33	42	35	32	28	31

Do the population variances differ significantly?

14M CO4 L4

	ap
	s ma
	e treated as
	tec
'n	rea
ge	ē
g	9
Ĭ	⋛
<u>0</u>	46,
- Bulu	å
⊒	32
cross line on the remail	eg. 32+8=40,
<u>e</u>	ě
Ĕ	tter
5	Ň
e	S
≡ S	ē
S	Ina
	9
<u> </u>	Š
ago	anc
/ draw diagonal	5
Š	uat
	ā
5	é
Compuisor	픚
헏	beg
Ę	abl
ر ن	Ä,
é	atic
2	ij
ਰ	ent
you	ğ
9	Ö
Ę.	ij
₫	/ea
Ö	ē
_	Any revealing
<u>ر</u>	2. A
-	11
5	
<u>_</u>	

Code: 194546T						J	R-19	
Hall Ticket Number :								

II B.Tech. II Semester Supplementary Examinations April 2023

Software Engineering

		(Computer Science and Engineering)			
	Mc	ax. Marks: 70 Tin	ne: 3 H	lours	
	Ans	swer any five full questions by choosing one question from each unit (5x14: ************************************	= 70 M	arks)	
			Marks	СО	BL
		UNIT-I			
1.	a)	Explain the importance of Unified Process in software engineering	7M	CO1	L2
	b)	Memorize the software process in water fall model	7M	CO1	L1
		OR			
2.	a)	List the David Hooker software principles.	7M	CO1	L1
	b)	Discuss in detail about software process patterns.	7M	CO1	L2
		UNIT-II			
3.	a)	List the Thumb Rules for creating the analysis model.	5M	CO2	L1
	b)	explain about Domain analysis with a neat diagram	9M	CO2	L2
		OR			
4.	a)	Identify the seven distinct tasks in requirements engineering	8M	CO2	L2
	b)	Discus about Domain Analysis in detail	6M	CO2	L2
		UNIT-III			
5.	a)	Describe about Modularity in design concepts	7M	CO3	L2
	b)	Discus about the Deployment level design elements	7M	CO3	L2
		OR			
6.	a)	Describe about Cohesion and Coupling	10M	CO3	L2
	b)	Discuss about the component level design guidelines	4M	CO3	L2
		UNIT-IV			
7.	a)	Define Testing. Contrast the differences between verification and validation	7M	CO4	L1
	b)	Demonstrate the testing process with a neat diagram	7M	CO4	L3
		OR			
8.	a)	Differentiate between Stronger Vs Weaker Testing	7M	CO4	L4
	b)	Implement an Equivalence Class Partitioning in Black-Box Testing	7M	CO4	L3
		UNIT-V			
9.	a)	Define Risk. Discuss about Risk Identification and Risk assessment.	7M	CO5	L1
	b)	List the principle activities of software configuration management	7M	CO5	L1
		OR			
10.		Analyze the levels of SEI CMM model. Also give the differences between ISO 9000 and SEI CMM.	14M	CO5	L4

ly draw diagonal cross line on the remaining blank pages.	s written eg. 42+8=50, will be treated as malpra
e ren	.eg
on the rer	ritter
ne o	ns w
cross	equations
ilagonal	and/or
drawc	aluator
Compulsorily	ation, appeal to evaluator and/or
Note: 1. On completing your answers. Compulsoril	2. Any revealing of identification, appeal to evaluator and/or equations
on completing	any revealing c
_	2.
ant Note: 1. O	

10.

Codo: 104541T						R-19
Hall Ticket Number :						

II B.Tech. II Semester Supplementary Examinations April 2023

		Artificial Intelligence			
		(Computer Science and Engineering)			
			ne: 3 F		
	An	swer any five full questions by choosing one question from each unit (5x14	= 70 M	arks)	
			Marks	СО	BL
		UNIT-I			
1.		List and discuss the four basic kinds of agents.	14M	CO1	L1
		OR			
2.	a)	Define Artificial Intelligence	4M	CO1	L1
	b)	Explain in detail the properties of Task Environments	10M	CO1	L2
		UNIT-II			
3.		What is A* search? Explain various stages of A* search with an example	1/M	CO2	I 1
٥.		OR	14101	002	LI
1	۵)		71.1	CO2	1.4
4.	a)	What is uniform cost search?		CO2	
	b)	What is Constraint satisfaction problem? Explain with example	/ IVI	CO2	LI
		UNIT-III			
5.		Define the term knowledge. What is the role of knowledge in Artificial			
		Intelligence? Explain various techniques of knowledge representation.			
		Define the term knowledge.	14M	CO3	L1
		OR			
6.	a)	Define the syntactic elements of first-Order logic	7M	CO3	L1
	b)	Illustrate the use of first-order logic to represent knowledge	7M	CO3	L3
		UNIT-IV			
7	a)	Explain the concept of planning with state space search with an example	7M	CO4	12
٠.	b)	Discuss the significance of ontology			L2
	D)	OR	<i>1</i> IVI	004	LZ
0	۵)		71.4	CO4	1.4
Ο.	a)	List out the planning terminologies and components of planning	/ IVI	CO4	LI
	b)	What are the ways in which incomplete and incorrect information's can be handled in planning	7M	CO4	L1
		UNIT-V			
9.	a)	Explain the connection between \forall and \exists	7M	CO5	L2
	b)	What are quantifiers? explain	7M	CO5	L1
		OR			

Discuss about Bayesian Theory and Bayesian Network

14M CO5 L2

	ᇹ
	Ĕ
	~
	will be treated as mal
	0
	ĕ
	ъ
'n	ø
ű	₽
2	ĕ
אַ	므
_	₹
È	≥
<u>0</u>	Ċ,
2	written eg. 32+8=40
S	Щ
≣	Ψ
Ξ	ġ
<u></u>	က
Ξ	Ċ.
פ	ĕ
1)	\subseteq
Ξ	ō
_	ℼ
5	>
11	>
≝	ည
=	ō
ŭ	Ξ
3	3
gorial cross line on	or equations
_	Φ
<u>ত</u>	Ξ
5	×
5	2
<u>v</u>	ਲ
w diag	Ä
≥	뒫
ับ	ā
5	≓
`_	3
Ξ'	Ó
5	0
<u>2</u>	ニ
₹	ğ
=	9
₹	ď
3	
	σ
٠.	a,
'n	on, appeal to evaluator and/or
מ	ation, appeal to evaluator and/or equations written eg. 32+8=40, v
WG V	cation, a
Swels.	ifica
disweis.	ifica
allowers.	ifica
Jul allsweis.	ifica
your answers.	ifica
your answers.	ifica
rig your ariswers.	ifica
sung your answers.	ifica
neilig your allsweis.	ifica
iipietiiig your arisweis. v	ifica
unpreung your answers.	ifica
completing your answers.	ifica
n completing your answers.	dentifica
on completing your answers.	Any revealing of identifica
. On completing your answers.	ifica
1. On completing your answers.	Any revealing of identifica
e. I. Oli completting your answers.	Any revealing of identifica
ote. I. Ott completing your answers.	Any revealing of identifica
vote. I. Officorripleting your arrawers.	Any revealing of identifica
r Note. T. On completing your answers.	Any revealing of identifica

Max. Marks: 70

Hall Ticket Number :										
Code: 19A542T		1	<u>I</u>	I	ı	1	I	1	R-19	

II B.Tech. II Semester Supplementary Examinations April 2023

Design and Analysis of Algorithms

(Computer Science and Engineering)

		swer any five full questions by choosing one question from each unit (5x14	4 = 70 N		
		******	Marks	СО	BL
		UNIT-I			
1.	a)	Write an algorithm for finding n natural numbers	7M	CO1	1
	b)	Explain the algorithm for Fibonacci sequence of n numbers	7M	CO1	2
	,	OR	71.4	004	_
2.	,	Compare and contrast between iterative and recursive process	7M	CO1	5
	b)	How do we analyze algorithms? Explain	7M	CO1	5
		UNIT-II			
3.		Explain about prims algorithm with an example	14M	CO2	2
		OR			
4.	a)	What are the applications of greedy method	7M	CO2	2
	b)	Explain the general method of greedy method	7M	CO2	2
-					
. –	,	UNIT-III	-1.4	000	
5.	,	What does dynamic programming have in common with divide and conquer	7M	CO3	4
	b)	Explain the applications of dynamic programming	7M	CO3	2
6.		OR Explain about Travelling sales person problem using dynamic programming	14M	CO3	2
0.		Explain about Travelling sales person problem using dynamic programming	1 -+111	003	2
<u>-</u>		UNIT-IV			
7.	a)	Write in detail 8 queens problem	7M	CO4	4
	b)	Explain the control abstraction for back tracking method	7M	CO4	2
		OR			
8.	a)	Explain properties of LC search	7M		2
,	b)	Write the control abstraction of LC branch and bound method	7M	CO4	4
		UNIT-V			
9.	a)	Explain in detail the classes of P and NP with examples	7M	CO5	2
ı	b)	Explain the strategy to prove that a problem is NP hard in detail	7M	CO5	2
		OR			
10.		State and Explain COOKS theorem in detail	14M	CO5	1,2

Time: 3 Hours

	Н	lall Ticket Number :												ĺ				
	Co	ode: 19A543T		I			l.	1								R-19		
	II B.Tech. II Semester Supplementary Examinations April 2023																	
		For			_	jage v Scic							ory	7				
	(Computer Science and Engineering) Max. Marks: 70 Time: 3 Hours Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks) ***********************************																	
							****	***								Marks	СО	BL
						l	UNI ⁻	T–I										
1.	a)	Define Alphabet			_		•						-			6M	CO1	L1
	b)	Construct DFA	-							_								
		acceptance of the q0 is the start start			_					e i	-as.	AS	sum	ie i	inat			
		qo io trio otari ot		aria	90		0		,. 1									
				qC)),q1]	}	{q0}									
				q1		(99	-		(q2)									
				q2			-		(q3)									
				- q3			-		-							10M	CO1	L5
				<u> </u>			OR											
2.	a)	Compare and co	ontra	ast N	Mod	re M	1ach	ine	with	1 N	/lela	у М	ach	ine	?	5M	CO1	L5
	b)	Design a DFA t	hat	acc	ept	s the	e lai	ngu	age	0'	ver	the	alp	hal	bet,			
		$= \{0, 1, 2\} \text{ wh}$	ere	the	ded	cima	l eq	uiva	alen	t o	f the	e la	ngu	ag	e is	014		
		divisible by 3?					18117									9M	CO1	L6
2	2)	Explain the class	uro	nror	oorti		JNIT		yr Io	na		202				6M	000	
Э.	a) b)	Explain the close Construct a Finite	•				•	•		·	•					OIVI	CO2	L2
	D)	Construct a r inii		utor -1)(1			uic	ieg	Julai	C,	xpic	SSIC	JII:			8M	CO2	15
			(0.	. / (O)	OR									0	002	LO
4.	a)	Define a Regula	r ex	pre	ssic	n. F		regi	ular	ех	pres	ssic	ns i	for	the			
	,	following langua		•				•			•							
		i. All strings	of o	dd I	eng	th												
		ii. All strings														014		L1
	L۱	iii. All strings										0					CO2	L5
	b)	Show that the La	angu	uage	e L	_				ìτr	egul	ar?				6M	CO2	L6
F	٥,	liot the electric	0 K C :-	- L-L-L	00 -		JNIT			۱.	n~··	0 2: 2	\ <u>^</u>			CN 4		
ວ.	a)	List the closure	prop	erti	es (JI CC	וונפ	Χĺ Γ	ree	∟a	ıngu	age	35?			DIVI	CO3	L1

Code: 19A543T

	b)	Explain minimization of CFG with the following example?			
	,	S aA aBB			
		A aAA			
		B bB bbC			
		СВ	8M	CO3	L2
		OR			
6.	a)	Construct a FA recognizing the following regular grammar?			
		S aS/bA/b			
		A aA/bS/a	6M	CO3	L5
	b)	Convert the given CFG to CNF?			
		S aAs/a			
		A SbA/SS/ba	8M	CO3	L6
		UNIT-IV			
7.	a)	Write and explain about Push Down Automata?	4M	CO4	L1
	b)	Construct a PDA that accepts the language L= $\{wcw^R/w \in \{a, b\}\}$?	10M	CO4	L5
		OR			
8.	a)	Describe equivalence of CFL and PDA with appropriate example?	6M	CO4	L2
	b)	Design PDA to accept the following CFG?			
		S AA/a			
		A SA/b	8M	CO4	L6
		UNIT-V			
9.	a)	Write short notes on Liner Bounded Automaton?	6M	CO5	L4
	b)	Design Turing's Machine to accept the language $L=\{a^n\ b^n\ c^n\ /$			
		n 1}. Also give the graphical representation and Instantaneous	4014		
		description (ID) for the import "aabbcc"?	10IVI	CO5	L6
4.0		OR	61.4		
10.		Write and explain about Counter machines?		CO5	
	b)	Design a TM for L = $\{0^n1^n \mid n \mid 1\}$	8M	CO5	L6

	malr
	98
	atec
ık pages.	tre.
< pa	ļ.
an	S
Ingr	-8=4
Jain	32+
ren	e
the	itten
e o	N.
<u>.</u>	tion
cros	SCID
na	or e
lago	and
p ≪	ator
y dr	
Sorij	to e
ind	le a
S	apr
e S	ţion
JSW6	ifica
ш Ц	dent
g yo	j
etin	alino
dmc	eVe.
. Note: 1. On completing your answers. Compulsorily draw diagonal cross line on the remaining blank	2. Any revealing of identification, appeal to evaluator and/or equations written eq. 32+8=40, will be treated as malr
<u>-</u>	2
ote:	
ž	

Max. Marks: 70

Hall Ticket Number :								
Code: 19A544T						R-	-19	

II B.Tech. II Semester Supplementary Examinations April 2023

Object Oriented Programming using JAVA

(Computer Science and Engineering)

;		An	swer any five full questions by choosing one question from each unit $(5x14 = 1)$	70 Mai	rks)	
			**************************************	Marks	СО	BL
_			UNIT-I			
	1.	a)	Explain the benefits and applications of OOPs	7M	1	2
i i		b)	List and explain the java buzz words.	7M	1	1,2
			OR			
	2.	a)	Write a java program to find any given number is palindrome or not	8M	1	3
		b)	Explain the importance of byte code in java programming	6M	1	2
			UNIT-II			
1	3.	a)	Write a program to demonstrate static variables, methods and blocks.	7M	2	3
		b)	Explain the differences between abstract class and interface	7M	2	2
			OR			
	4.	a)	Differentiate between method overloading and method overriding with an		_	_
			example.	7M	2	2
		b)	Explain the keywords this, static, super and final with one example each.	7M	2	2
;	_		UNIT-III		_	_
	5.	a)	Write a java program to display the priority of a thread.	7M	3	3
		b)	What is an exception? In what way it is differ from error? Explain.	7M	3	1,2
	_	,	OR			
	6.	a)	With the help of an example, explain multithreading by extending Thread	7M	3	2
		b)	Class Distinguish between final and finally knywords		3	2
<u>_</u>		b)	Distinguish between final and finally keywords	7M	3	2
	7	a)	Write about the different lambda parameter passing techniques.	7M	4	3
	۲.	a) b)		7 IVI 7M	4	1
		D)	Give brief description about the java's generic classes. OR	/ IVI	4	'
	Q	a)	What are the restrictions on generics usage? Explain briefly.	7M	4	2
,	0.	а) b)	Explain predefine functional interfaces.	7 M	4	2
		D)	UNIT-V	<i>1</i> IVI	4	2
	a	a)	Explain the differences between Vector and Arrays. Explain the methods in			
i	٦.	a)	Vector class.	7M	5	2
		b)	Explain various interfaces used in Collection framework?	7M	5	2
			OR			
	10.	a)	Explain the importance of Hash set interface in java	7M	5	2
		b)	What is Scanner class? Describe the details of Scanner class.	7M	5	1,2

Time: 3 Hours