Code: 19A542T
R-19
|| B.Tech. II Semester Supplementary Examinations November 2023

Design and Analysis of Algorithms

> (Computer Science and Engineering)

Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Differentiate between best, average and worst case efficiency

7M CO1 L4
b) Explain the concept of amortized analysis

7M CO1 L2
OR
2. a) Explain properties of an algorithm with an example $\quad 7 \mathrm{M} \quad \mathrm{CO} 1 \quad \mathrm{~L} 2$
b) Write the algorithm for matrix multiplication and find the time complexity of matrix multiplication

7M CO1 L2

UNIT-II

3. a) Explain the general method of divide and conquer approach 7M CO2 L2
b) Write the algorithm of binary search
$7 \mathrm{M} \mathrm{CO2}$ L2

OR

4. a) What are the advantages of divide and conquer 8M CO2 L4
b) Write the best case , average case time complexity of merge sort 6M CO2 L2

UNIT-III

5. Explain optimal binary search tree with the help of an example $\quad 14 \mathrm{M} \quad \mathrm{CO} \quad \mathrm{L} 2$

OR
6. a) List the applications of dynamic programming

7 M CO3 L2
b) What is the time of $\mathrm{O} / 1$ Knapsack problem using dynamic programming

7 M CO3 L4

UNIT-IV

7. a) Explain in detail 4 queens problem

7 M CO4 L2
b) What are the applications of branch and bound method $7 \mathrm{M} \quad \mathrm{CO} 4 \quad \mathrm{L4}$

OR
8. a) Explain in detail LC search algorithm in detail $7 \mathrm{M} \quad \mathrm{CO} 4 \quad \mathrm{~L} 2$
b) What are the advantages of LC search algorithm $\quad 7 \mathrm{M} \quad \mathrm{CO} \quad \mathrm{L} 4$

UNIT-V

9. Illustrate the relationship among the NP,NP hard and NP complete in detail 14 M CO5 L3

OR
10. State and Explain COOKS theorem in detail $14 \mathrm{M} \quad$ CO5 L2
|| B.Tech. II Semester Supplementary Examinations November 2023

Formal Languages and Automata Theory

(Computer Science and Engineering)
Max. Marks: 70
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)
Marks CO BL

UNIT-I

1. a) What are the difference between NFA and DFA?

4M CO1 L5
b) Explain about Chomsky hierarchy of languages?

10M CO1 L2
OR
2. a) Prove or explain with the help of an algorithm that "Every NFA will have an equivalent DFA".

4M CO1 L6
b) Minimize the Finite automaton given below and show both the given and the reduced one are equivalent?

10M CO1 L3
UNIT-II
3. a) How to construct Regular Expressions from the given FA?

4M CO2 L4
b) Construct Finite Automaton to accept the Regular Expression

$$
(0+1) *(00+11)(0+1)^{*} .
$$

OR

4. a) Simplify the Regular Expression

$$
+1^{*}(011)^{*}\left(1^{*}(011)^{*}\right)^{*}
$$

$$
4 \mathrm{M} \quad \mathrm{CO} \quad \mathrm{~L} 3
$$

b) Construct a NFA for the regular expression $(a+b)^{*} a b b$ and draw its equivalent DFA?

UNIT-III

5. a) Convert the following CFG into Griebach Normal Form?

$$
\begin{aligned}
& S \rightarrow X A \mid B B \\
& B \rightarrow b \mid S B \\
& X \rightarrow b \\
& A \rightarrow a
\end{aligned}
$$

[^0]b) Explain Pumping Lemma of CFL with an example?

OR

6. a) Reduce the following grammar G into an equivalent grammar by removing useless symbols and useless productions from it?
$S \rightarrow$ aAa
$\mathrm{A} \rightarrow \mathrm{Sb} / \mathrm{bcc} / \mathrm{DaA}$
C \rightarrow abb/DD
$\mathrm{E} \rightarrow \mathrm{ac}$
D \rightarrow aDA
b) Construct a regular grammar G generating the regular set represented by $a^{*} b(a+b)^{*}$?

8M CO3 L5

UNIT-IV

7. a) What are different types of PDA?
b) Construct PDA that accepts the language $L=\left\{0^{n} 1^{m} / n \neq m\right.$, $n, m \geq 1\}$?

10M CO4 L5

OR

8. a) Let G be a CFG that generates the set of palindromes given by $\mathrm{S} \rightarrow \mathrm{aSa} / \mathrm{bSb} / \mathrm{a} / \mathrm{b}$
Find the PDA that accepts $L(G)$ and simulate for input abbbbb?
$6 \mathrm{M} \mathrm{CO4} \mathrm{L3}$
b) Construct the PDA that recognizes the language

$$
\begin{aligned}
\mathrm{L}=\left\{\mathrm{x}=\mathrm{x}^{\mathrm{R}} / \mathrm{x} \text { belongs to }\{\mathrm{a}, \mathrm{~b}\}^{*}\right\} & \text { 8M Co4 L5 } \\
\text { UNIT-V } &
\end{aligned}
$$

9. a) Show that PCP is undecidable for words over a one symbol alphabet?

4M CO5 L3
b) Design a Turing Machine that accepts the language $L=\left\{w w^{R} / w \in\{a, b\}\right\}$.

OR

10. a) Define Turing Machine formally; explain how Turing

Machine can be used to compute integer functions?
$6 \mathrm{M} \mathrm{CO5}$ L3
b) Design the Turing Machine to compute following function, show its transition diagram also $f(x, y)=2 x+3 y$ where x and y are positive integers represented in unary?

8M CO5 L6
\square

Code: 19A544T

II B.Tech. II Semester Supplementary Examinations November 2023

Object Oriented Programming using JAVA

(Computer Science and Engineering)

Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. Define multidimensional array? Write a java program for matrix multiplication.

OR

2. a) List and explain the java buzz words.
b) What is Byte code? Explain the various stages of programming in Java

UNIT-II

3. a) Explain with an example program the importance of interfaces in java programming.
b) What is polymorphism? Explain runtime polymorphism with a program.

OR

4. a) List the advantages of packages over classes.
b) Explain access specifiers in java in detail.

7 M CO2 L1
$7 \mathrm{M} \mathrm{CO2}$ L2

UNIT-III

5. In how many ways a thread in java can be implemented? Explain each with example program.

14M CO3 L3
OR
6. What is an Exception? List out the keywords for exception handing and write steps to develop user defined exception.

UNIT-IV

7. a) Discuss about the instance variable and static variable capture using lambda.

7M CO4
L5
b) What is a Generic Method? Illustrate Generic Method with an example program
7M CO4 L3

OR

8. a) What are the three parts of a Lambda Expression? What is the type of Lambda Expression?

7 M CO4 L5
b) What are the restrictions on generics usage? Explain briefly.

7M CO4 L2

UNIT-V

9. a) Write and explain the Collection interface.

7M CO5 L2
b) Explain ArrayList class and explain following methods:
i. add() ii. size() iii. equals() iv. remove()

OR
10. a) Give brief description about the LinkedList class in java Collection 7M CO5 L2
b) Demonstrate stack operations using Stack legacy class.

Hall Ticket Number :
Code: 19A545T
II B.Tech. II Semester Supplementary Examinations November 2023

Operating Systems

(Computer Science and Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Describe the differences between short-term, medium-term, and long-term scheduling.

7M CO1 L4
b) Explain the direct and indirect process of communication using the message passing system?

7M CO1 L2

OR

2. a) What is an Operating system? List and explain different Operating Systems Operations?

7M CO1 L2
b) Why Operating System is known as Resource Manager. Explain the layered architecture of an Operating System

7M CO1 L2

UNIT-II

3. Elaborate on different Multithreading models? $14 \mathrm{M} \quad \mathrm{CO} 2 \mathrm{~L} 2$

OR

4. a) What are semaphores? Explain Binary and counting semaphores with example? $7 \mathrm{M} \quad \mathrm{CO} 2 \quad \mathrm{~L} 2$
b) Elaborate on the race condition in process synchronization? 7M CO2 L2

UNIT-III

5. a) Is it possible to have a deadlock involving only a single process? Explain your answer?
$7 \mathrm{M} \quad \mathrm{CO} 3 \quad \mathrm{~L} 4$
b) Explain the different methods to recover from the deadlock? $7 \mathrm{M} \quad \mathrm{CO} \quad \mathrm{L} 2$

OR

6. a) What is a Safe State is Deadlock? Explain Banker's Algorithm for Deadlock Avoidance with a suitable example?

8 M CO 3 L 2
b) What is a deadlock? Explain in brief Deadlock Prevention?

6 M CO 3 L 2

UNIT-IV

7. List and Discuss different Disk scheduling algorithms with suitable examples? 14 M CO4 L4

OR

8. What is RAID? Explain different RAID levels with a neat diagram? $14 \mathrm{M} \quad$ CO4 L2

9. a) Discuss the protection of operating systems using firewalls?

7M CO5 L2
b) Discuss different types of standard security attacks.

7 M CO5 L2

OR

10. a) Draw and explain about PC bus structure? $7 \mathrm{M} \quad \mathrm{CO} \quad \mathrm{L} 2$
b) Outline the significance of polling in I/O systems?

Hall Ticket Number : \square
Code: 19AC43T
R-19
|| B.Tech. II Semester Supplementary Examinations November 2023

Probability and Statistics

(Computer Science and Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks) Marks CO

UNIT-I

1. Find the coefficient of correlation between industrial production and export using the following data and comment on the result.

Production (in crores tons):	55	56	58	59	60	60	62
Exports (in crores tons) :	35	38	38	39	44	43	45
OR							

14M CO1 L3
2. Find the Spearman's rank correlation coefficient to the data:

3. State and prove Addition theorem on probability for three events

OR

4. A random variable X has the following probability function

X	0	1	2	3	4	5	6	7
$\mathrm{P}(\mathrm{X})$	0	K	2 K	2 K	3 K	$\mathrm{~K}^{2}$	$2 \mathrm{~K}^{2}$	$7 \mathrm{~K}^{2}+\mathrm{K}$

Find the value of K, (ii)Evaluate $p(0<x<5)$, (iii) Evaluate $p(x<5)$
14M CO2 L3

UNIT-III

5. If a random variable has a Poisson distribution such that $P(1)=P(2)$ find (i) Mean of the distribution,(ii) $P(4)$,(iii) $P(x \geq 1)$,(iv) $P(1<x<4)$

14M CO3 L2
OR
6. A hospital switch board receives an averages of 4 emergency calls in a 10 minutes interval. What is the probability that (i) there are at most 2 emergency calls in a 10 minute interval (ii) there are exactly 3 emergency calls in a 10 minute interval?

14M CO3 L3
UNIT-IV
7. A random sample of size 100 has a standard deviation of 5 . What can you say about the maximum error with 95% confidence?

OR

8. The mean life of a sample of 10 electric bulbs was found to be 1456 hours with S.D of 423 hours. A second sample of 17 bulbs chosen from a different batch showed a mean life 1280 hours with S.D. of 398 hours. Is there a significant difference between the means of two batches?
[^1]
UNIT-V

9. In a test given two groups of students, the marks obtained are as follows:

First Group :	18	20	36	50	49	36	34	49	41
Second Group:	29	28	26	35	30	44	46	-	-

Estimate the significance of the difference between the mean marks secured by the students of the above two groups.

14 M CO4 L4
OR
10. 1000 students at college level were graded according to their IQ and economic condition of their home. Chose an appropriate test to find the any association between condition at home and I.Q.

economic condition	high	low	Total
Rich	460	140	600
Poor	240	160	400
Total	700	300	1000

14M CO4 L5

Hall Ticket Number :

Code: 19A541T

R-19

II B.Tech. II Semester Supplementary Examinations November 2023

Artificial Intelligence

(Computer Science and Engineering)
Max. Marks: 70
Time: 3 Hours

1. a) What is rationality? Define Rational agent.
$7 \mathrm{M} \mathrm{CO1}$
L1
b) Explain the Structure of Intelligent agents

7M CO1 L2
OR
2. Explain Goal Based Agent and Utility based Agent architecture with proper diagram.

14M CO1 L2

UNIT-II

3. Develop algorithms for Depth first and Breadth First search algorithms? 14M CO2 L6

OR

4. What are the constraints on a crypt arithmetic problem? Solve the following Crypt Arithmetic Problem:
$S E N D+M O R E=M O N E Y$
14M CO2 L1

UNIT-III

5. Explain with an example
(a) forward chaining
(b) Backward chaining

14M CO3 L2
OR
6. Given the following set of facts, Prove that " Some who are intelligent can't read ".
(i) Who ever can read is literal.
(ii) Dolphins are not literate
(iii) Some Dolphins are intelligent.

UNIT-IV

7. What is Ontological Engineering? Explain with the diagram the upper ontology of the world

14M CO4 L1

OR

8. Briefly discuss about Hierarchical Planning

14M CO4 L2

UNIT-V

9. Explain Inference using full joint distribution

14M CO5 L2
OR
10. Briefly discuss about reasoning done using fuzzy logic.

14M CO5 L2

[^0]: 10M CO3L6

[^1]: 14M CO4 L4

