	흗
	d as ma
	S
	e treated as
	ě
	ă
es	₹
ğ	
ă	=
ž	⋛
<u>a</u>	0, will b
<u></u>	eg. 32+8=40,
Ĕ	φ
⊒	Ž
Ë	رن
<u></u>	eg
Φ	٦
	ŧ
5	Ξ
cross line on the l	S
≣	ä
Š	∺
ĕ	≌
ပ	e
agonai	ō
ğ	र्षे
<u>ಹ</u>	a
0	valuator and/o
ğ	ā
5	≓
⋛	8
ō	on, appeal to eval
≅	픑
₫	ě
Compuis	d
3	α,
i,	
ē	aţi
S	<u>ij</u>
g	∄
=	횾
g your a	Ξ
6	0
₽	.⊑
<u>e</u>	g
É	Š
ġ.	9
_	2
)	Any revealing of ider
	ď
<u>a</u>	
٥	
=	

Code: 1945/2T]					J	R-19	
Hall Ticket Number :								

II B.Tech. II Semester Supplementary Examinations November 2023

			Design and Analysis of Algorithms			
			(Computer Science and Engineering)			
				ne: 3 F		
;		An	swer any five full questions by choosing one question from each unit (5x14	= 70 M	arks)	
2				Marks	СО	BL
2			UNIT-I			
2	1.	a)	Differentiate between best, average and worst case efficiency	7M	CO1	L4
3		b)	Explain the concept of amortized analysis	7M	CO1	L2
2			OR			
2	2.	a)	Explain properties of an algorithm with an example	7M	CO1	L2
>		b)	Write the algorithm for matrix multiplication and find the time complexity of			
,		-,	matrix multiplication	7M	CO1	L2
5			·			
			UNIT-II			
5	3.	a)	Explain the general method of divide and conquer approach	7M	CO2	L2
		b)	Write the algorithm of binary search	7M		L2
2		٥,	OR		002	
	1	a)	What are the advantages of divide and conquer	8M	CO2	L4
2	٦.	b)	Write the best case ,average case time complexity of merge sort	6M		
5		D)	write the best case ,average case time complexity of merge sort	Olvi	002	LZ
3			LINUT III			
2	_		UNIT-III	1 1 1 1	CO2	1.0
5	5.		Explain optimal binary search tree with the help of an example OR	14101	CO3	L2
2	_	- \	_	71.4	000	
3	6.	a)	List the applications of dynamic programming	7M	CO3	L2
2		b)	What is the time of O/1 Knapsack problem using dynamic programming	7M	CO3	L4
, -						
2			UNIT-IV			
2	7.	a)	Explain in detail 4 queens problem	7M	CO4	L2
5		b)	What are the applications of branch and bound method	7M	CO4	L4
פֿ			OR			
3	8.	a)	Explain in detail LC search algorithm in detail	7M	CO4	L2
<u>,</u>		b)	What are the advantages of LC search algorithm	7M	CO4	L4
1			UNIT-V			
	9.		Illustrate the relationship among the NP,NP hard and NP complete in detail	14M	CO5	L3
			OR			
	10.		State and Explain COOKS theorem in detail	14M	CO5	L2

Hall Ticket Number : R-19

II B.Tech. II Semester Supplementary Examinations November 2023

Formal Languages and Automata Theory

(Computer Science and Engineering)

Max. Marks: 70 Time: 3 Hours

Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)

Marks CO BL

UNIT-I

- 1. a) What are the difference between NFA and DFA?

 4M CO1 L5
 - b) Explain about Chomsky hierarchy of languages? 10M co1 L2

OR

- - b) Minimize the Finite automaton given below and show both the given and the reduced one are equivalent?

10M CO1 L3

UNIT-II

- 3. a) How to construct Regular Expressions from the given FA? 4M CO2 L4
 - b) Construct Finite Automaton to accept the Regular Expression

$$(0 + 1) *(00+11) (0 + 1) *.$$

10M CO₂ L₅

OR

4. a) Simplify the Regular Expression

4M CO₂ L₃

- b) Construct a NFA for the regular expression (a+b)*abb and draw its equivalent DFA?
- 10M CO₂ L₅

UNIT-III

- 5. a) Convert the following CFG into Griebach Normal Form?
 - S XA | BB
 - B b | SB
 - X b
 - A a 10M co₃ L₆

Code: 19A543T

b) Explain Pumping Lemma of CFL with an example? 4M CO₃ L₂ OR 6. a) Reduce the following grammar G into an equivalent grammar by removing useless symbols and useless productions from it? S aAa Α Sb/bcc/DaA C abb/DD Ε ac 6M CO3 L6 D aDA b) Construct a regular grammar G generating the regular set represented by a*b(a+b)*? 8M CO3 L5 UNIT-IV 7. a) What are different types of PDA? 4M CO4 L4 b) Construct PDA that accepts the language $L = \{0^{n}1^{m}/n \ m,$ n, m 1}? 10M CO₄ L₅ OR 8. a) Let G be a CFG that generates the set of palindromes given by S aSa/bSb/a/b Find the PDA that accepts L(G) and simulate for input abbbbb?. 6M CO4 L3 b) Construct the PDA that recognizes the language L={ $x=x^R / x$ belongs to {a, b}*} 8M CO₄ L₅ UNIT-V 9. a) Show that PCP is undecidable for words over a one symbol alphabet? 4M CO5 L3 b) Design a Turing Machine that accepts the language $L = \{ww^R/w \in \{a, b\}\}.$ 10M CO₅ L₆ OR 10. a) Define Turing Machine formally; explain how Turing L1 Machine can be used to compute integer functions? 6M CO5 L3 b) Design the Turing Machine to compute following function. show its transition diagram also f(x, y) = 2x + 3y where x and y are positive integers represented in unary? 8M CO5 L6

Hall Ticket Number :						R-19	_
Code: 19A544T						K-17	

II B.Tech. II Semester Supplementary Examinations November 2023

Object Oriented Programming using JAVA

		(Computer Science and Engineering)			
			ne: 3 H		
	An	swer any five full questions by choosing one question from each unit (5x14: ************************************	= 70 M	arks)	
<u> </u>		UNIT-I	Marks	СО	BL
1.		Define multidimensional array? Write a java program for matrix multiplication.	14M	CO1	L2
		OR			
2.	a)	List and explain the java buzz words.	8M	CO1	L2
	b)	What is Byte code? Explain the various stages of programming in Java	6M	CO1	L2
, C		UNIT-II			
3.	a)	Explain with an example program the importance of interfaces in java programming.	7M	CO2	L3
	b)	What is polymorphism? Explain runtime polymorphism with a program.	7M		L3
	D)	OR	/ IVI	COZ	LJ
4.	a)	List the advantages of packages over classes.	7M	CO2	L1
	b)	Explain access specifiers in java in detail.	7M	CO2	L2
-		LIMIT III			
5.		UNIT-III In how many ways a thread in java can be implemented? Explain each with			
5 O.		example program.	14M	CO3	L3
5		OR			
6.		What is an Exception? List out the keywords for exception handing and write steps to develop user defined exception.	14M	CO3	L3
<u>.</u>		UNIT-IV			
7.	a)	Discuss about the instance variable and static variable capture using			
		lambda.	7M	CO4	L5
5	b)	What is a Generic Method? Illustrate Generic Method with an example program	7M	CO4	13
ָ מ		OR	7 1 1 1	001	
8.	a)	What are the three parts of a Lambda Expression? What is the type of			
) 	ω,	Lambda Expression?	7M	CO4	L5
;	b)	What are the restrictions on generics usage? Explain briefly.	7M	CO4	L2
		UNIT-V			
9.	a)	Write and explain the Collection interface.	7M	CO5	L2
	b)	Explain ArrayList class and explain following methods:			
		i. add() ii. size() iii. equals() iv. remove()	7M	CO5	L2
		OR			
10.	a)	Give brief description about the LinkedList class in java Collection	7M	CO5	L2

b) Demonstrate stack operations using Stack legacy class.

CO₅

L3

7M

	ᅙ
	ted as malp
	_
	as
	σ
	æ
	ag
S	₽
ğ	ø
ď	2
≚	tten eg. 32+8=40, will be treated
a	$\vec{\cdot}$
ā	3
Ō	Щ
≣	¥
ਜ਼ੋ	32
Ĕ	
<u>a</u>	8
Ð	_
È	重
_	ŧ
oss line on the remaining	≥
e e	S
≡	5
SS	Ή
ő	equation
\overline{c}	8
ਲ	Ξ
\equiv	梷
ള	2
<u>a</u>	Ø
0	ō
≨	ă
=	⊒
>	Š
≣`	n, appeal to eval
တ္တ	₽
∺	ਲ
9	ě
_	d
3	Ø
	Ĕ,
10	읁
≶	ġ
2	≝
ਰ	Ħ
≒	æ
5	.≃
\sim	ling of identif
ĭ,	þ
etl	ቜ
ā	eg
Ē	8
S	۳
_	2
Ď	⋖
_:	Any reveal
ore:	
Note	

Hall Ticket Number :						D 14	
Code: 19A545T						R-19	

II B.Tech. II Semester Supplementary Examinations November 2023

Operating Systems

		Operating systems			
	111	(Computer Science and Engineering) ax. Marks: 70	ne: 3 H	lours	
		swer any five full questions by choosing one question from each unit (5x14:			
		*****	Marka	00	DI
		UNIT-I	Marks	СО	BL
1.	a)	Describe the differences between short-term, medium-term, and long-term			
		scheduling.	7M	CO1	L4
	b)	Explain the direct and indirect process of communication using the			
		message passing system?	7M	CO1	L2
		OR			
2.	a)	What is an Operating system? List and explain different Operating Systems Operations?	71.1	CO1	ΙO
	h)	Why Operating System is known as Resource Manager. Explain the	/ IVI	COT	LZ
	b)	layered architecture of an Operating System	7M	CO1	L2
		UNIT-II			
3.		Elaborate on different Multithreading models?	14M	CO2	L2
		OR			
4.	a)	What are semaphores? Explain Binary and counting semaphores with example?	7M	CO2	L2
	b)	Elaborate on the race condition in process synchronization?	7M	CO2	L2
		UNIT-III			
5.	a)	Is it possible to have a deadlock involving only a single process? Explain			
		your answer?	7M		L4
	b)	Explain the different methods to recover from the deadlock?	7M	CO3	L2
		OR			
6.	a)	What is a Safe State is Deadlock? Explain Banker's Algorithm for Deadlock Avoidance with a suitable example?	8M	CO3	L2
	h)	What is a deadlock? Explain in brief Deadlock Prevention?		CO3	
	D)	UNIT-IV	Olvi	003	LZ
7.		List and Discuss different Disk scheduling algorithms with suitable examples?	14M	CO4	L4
		OR			
8.		What is RAID? Explain different RAID levels with a neat diagram?	14M	CO4	L2
		UNIT-V			
9.	a)	Discuss the protection of operating systems using firewalls?	7M	CO5	L2
	b)	Discuss different types of standard security attacks.	7M	CO5	L2
		OR			
10.	a)	Draw and explain about PC bus structure?	7M	CO5	L2

b) Outline the significance of polling in I/O systems?

7M CO5 L2

	Hall Ticket	Nur	nbe	r:														1	
(Code: 19A	C43	Γ	l	<u> </u>						ı .		l				R-19	,	
				Sen	nest	er S	upp	lem	ento	ary E	xam	nina	tion	s No	ven	nber	2023		
					10				-	ınd S				1					
	Max. Mar Answer an			ll que											unit (ne: 3 H = 70 M		
																	Marks	CO	BL
1.	Find the	coe	fficie	ent c	of co	rrela [.]	tion I		NIT-		trial ı	orodi	ıctior	n and	d exn	ort			
•	using the										iliai į	oroac	200101	· an	и олр	Oit			
		Prod	lucti	on (i	n cro	res t	ons):	55	56	58	59	60	60	62					
		Exp	orts	s (in	crore	s tor	ns) :	35	38	38	39	44	43	45			14M	CO1	L3
	Eta di da a	0					l = (' =		OR	-11-1		1							
2.	Find the	Spea	ırma X:	in's r 68	апк (64	corre 75	50	64	fficiei 80	nt to t 75	ne da 40	ita: 55	64						
			Λ. Υ:	62	58	68	45	81	60	68	48	50	70				14M	CO1	L3
		L	••		00	00	10		NIT-I		.0						1 1141	001	
3.	State and	d pro	ve A	dditi	on th	eore	m on				three	ever	nts				14M	CO2	L4
									OR										
1.	A randon	n vari	iable		as th														
			-	X	0			_			6	7							
		مريامير		P(X)	1 1							′K²+ŀ					4 4 5 4	000	
	Find the	value	9 01 1	∧ , (II	i)Eva	lluale	p(U		ວ), (I IIT–I	-	alual	e b(x	< 5)				14M	CO2	L3
5.	If a rand (i) Mean							n dis	tribu	tion s			•) = F	P(2) f	ind	14M	CO3	L2
								(OR										
5.	A hospital minutes in a minute in	interv a 10	/al. \ min	What	t is th	ne pr	obab	ility t	hat (i	i) ther	e are	at n	nost	2 em	erger	псу	14M	CO3	13

UNIT-IV

A random sample of size 100 has a standard deviation of 5. What can you say 7. about the maximum error with 95% confidence?

14M CO₄

OR

8. The mean life of a sample of 10 electric bulbs was found to be 1456hours with S.D of 423 hours. A second sample of 17 bulbs chosen from a different batch showed a mean life 1280 hours with S.D. of 398 hours. Is there a significant difference between the means of two batches?

14M CO₄ L4

Code: 19AC43T

UNIT-V

9. In a test given two groups of students, the marks obtained are as follows:

First Group :									41
Second Group:	29	28	26	35	30	44	46	-	-

Estimate the significance of the difference between the mean marks secured by the students of the above two groups.

14M CO4 L4

OR

10. 1000 students at college level were graded according to their IQ and economic condition of their home. Chose an appropriate test to find the any association between condition at home and I.Q.

economic condition	high	low	Total
Rich	460	140	600
Poor	240	160	400
Total	700	300	1000

14M CO4 L5

10.

Hall Ticket Number :						R-19	
Code: 19A541T						K-17	

II B.Tech. II Semester Supplementary Examinations November 2023 Artificial Intelligence				
(Computer Science and Engineering)				
Max. Marks: 70 Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks) ***********************************				
		Marks	СО	BL
	UNIT-I			
1. a)	What is rationality? Define Rational agent.	7M	CO1	L1
b)	Explain the Structure of Intelligent agents	7M	CO1	L2
OR				
2.	Explain Goal Based Agent and Utility based Agent architecture with proper diagram.	14M	CO1	L2
	<u></u>			
3.	UNIT-II Develop algorithms for Depth first and Breadth First search algorithms?	14M	CO2	L6
	OR			
4.	What are the constraints on a crypt arithmetic problem? Solve the following Crypt Arithmetic Problem:			
	SEND+MORE=MONEY	14M	CO2	L1
UNIT-III				
5.	Explain with an example			
	(a) forward chaining			
	(b) Backward chaining	14M	CO3	L2
	OR			
6.	Given the following set of facts, Prove that "Some who are intelligent can't read".			
	(i) Who ever can read is literal.			
	(ii) Dolphins are not literate			
	(iii) Some Dolphins are intelligent.	14M	CO3	L3
	UNIT-IV			
7.	What is Ontological Engineering? Explain with the diagram the upper ontology of the world	14M	CO4	L1
8.	OR Briefly discuss about Hierarchical Planning	14M	CO4	L2
9.	UNIT-V Explain Inference using full joint distribution OR	14M	CO5	L2

Briefly discuss about reasoning done using fuzzy logic.

14M CO₅ L₂