Hall Ticket Number :														
	R-20													
Il B.Tech. II Semester Supplementary Examinations December 2	2023													
Electromagnetic Fields														
(Electrical and Electronics Engineering)														
Max. Marks: 70 Tim	e: 3 Ho	ours												
 Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two marks. 3. Answer ALL the questions in Part-A and Part-B <u>PART-A</u> (Computation)														
(Compulsory question)														
1. Answer ALL the following short answer questions $(5 \times 2 = 10M)$		CO	BL											
a) Write properties of Gaussian surface.		CO1	L1											
b) Apply Curl to the vector of $\overline{A} = A_r \overline{ar} + A \overline{a} + A \overline{a}$.		CO1	L6											
c) Write expression of force on the moving charges.		CO4	L2											
d) Express differential length, differential surface area and differential	ntial													
volume in Cylindrical coordinate system.		CO1	L4											
e) Write Maxwell's equations in vacuum.		CO5	L3											
PART-B														
Answer <i>five</i> questions by choosing one question from each unit (5 x 12 = 60		-												
	Marks	CO	BL											
UNIT-I 2. a) Obtain expression of electrical field intensity due to infinite														
 a) Obtain expression of electrical field intensity due to infinite sheet of charge. 	6M	1	L3											
b) State coulomb's law of force between many point charges														
and state the units of force.	6M	1	L2											
OR														
3. a) Point charges 5 nC and -2 nC are located at (2, 0, 4) and														
(-3, 0, 5), respectively. Determine the force on a 1-nC point														
charge located at (1, -3, 7).	6M	1	L3											
b) The three vertices of a triangle are located at A(6,-1, 2),														
B(-2, 3,-4), and C (-3, 1, 5). Find: (i) $R_{AB} \times R_{AC}$; (ii) the area														
of the triangle; (iii) a unit vector perpendicular to the plane in which the triangle is leasted	6M													
which the triangle is located. UNIT-II	OIVI	1	L3											
4. a) Deduce the expression of electric potential due to electric														
dipole.	6M	2	L2											
b) Derive an expression of conduction current density.	6M	2	 L3											
	Page 1	of 2												

Code: 20A243T

5.	a)	Express boundary conditions between dielectric to conductor.	6M	2	L2
	b)	Obtain an expression for capacitance of a parallel plate with composite dielectrics.	6M	2	L3
			OW	2	LU
6.	a)	What is vector magnetic potential? Derive Vector Poisson's			
		equation.	6M	3	L1
	b)	State and Explain Biot- Savart law.	6M	3	L3
		OR			
7.	a)	State and prove Ampere's circuital law in point form.	6M	3	L6
	b)	A steady current of 1000 A is established in a long straight, hollow aluminum conductor of inner radius 1 cm and outer radius 2 cm. Assuming uniform resistivity, calculate magnetic flux density as a function of radius 'r' from the axis of the			
		conductor.	6M	3	L3
		UNIT–IV			
8.		Obtain the expressions of boundary conditions between two dielectrics.	12M	4	L2
		OR			
9.	a)	A toroid has air core and has a cross sectional area of 10mm2 it has 1000 turns and its mean radius is 10mm. find			
		its inductance.	6M	4	L3
	b)	Describe an expression for Magnetic Torque and Magnetic Dipole moment.	6M	4	2
		UNIT-V			
10.	-	Analyze integral form of Poynting theorem.	6M	5	L4
	b)	Find the conduction and displacement current densities in a material having a conductivity of 10^{-3} S/m and v _r 2.5, if the			
		electric field in the material is $E = 5.8 \times 10^{-6} \sin(9 \times 10^9 t) V / m$.	6M	5	L3
		OR			
11.	a)	With necessary explanation, derive the Maxwell equations in			
	-	electromagnetic fields.	6M	5	L6
	b)	Explain of Faraday's law for time-varying fields.	6M	5	L2

	Ha	all Ticket Number :														
	Co	de: 20A241T											R	-20		
	00	II B.Tech. II Ser	nestei	r Supp	blem	nent	ary	Exai	mino	atic	ons D)ecer	nber 20	23		
			I	Elect	rico	al N	\ac	hin	es	- 11						
			(Elec	ctrical	and	Elec	tror	nics E	Ingi	nee	ring)		T:	. 2		
	MC	ax. Marks: 70				****	****	*					nne	: 3 Hou	JIS	
	No	te: 1. Question Pape			-				and I	Par	t-B)					
		 In Part-A, each Answer ALL 	-						∙t_R							
		J. Allswei ALL	ine que	.5010115	111 1 6		RT-A		ι-D							
				(0	Comp				on)							
		nswer ALL the foll	-				-			``		2 = 10	OM)		со	BL
,		erentiate squirrel	•		•	•									1	L2
b)		starting current			-											
		rease in supply		-			s th	e si	arti	ng	curr	ent a	and sta	rting	_	
	-	ue related to the				-			• • • •		`				2	L4
		ne single phase ir						-		-					3	L2
		ine the term volta	-	-			-			-					4	L1
e)	Wha	at are the applica	tions	of thre	e pl	hase	e sy	nch	ronc	ous	mot	or?			5	L2
		A (*	h	-1			<u>RT-B</u>	•		1	••• (5 10		1)		
		Answer <i>five</i> questi	ons by	cnoosii	ng on	ie qu	estio	n iro	m ea	icn	unit (5 X 12	a = 60 Ma	rks) Marks	со	BL
						UN	IT–									
2.		A 3.73 kW, 20	0 V, s	50 H	z, 3	-pha	ase	sta	r cc	onn	ecte	d ind	duction			
		motor gave the		•			lts:									
		No load test : 20					700									
		Blocked rotor te A rotor Cu losse							stal	C 11	امد	-				
		Draw the induct														
		(i) Line current.					-						terms			
		of full load torqu	le.											12M	1	L3
						0	R									
3.	a)	Derive an expr							naxi	mu	m to	orque	of an			
		induction motor	unde	r runr	ning	con	ditio	on.						6M	1	L2
	b)	Explain in detail	labou	ut crav	wling	g an	d co	oggi	ng	of i	nduc	ction	motor	6M	1	L2
						UN	IT–I	I								
4.		Mention the me	ethods	s of s	pee	d co	ontr	ol o	f in	duo	ction	mot	or and			
		explain any two			of s	spee	ed c	ontr	olo	of 3	8-pha	ase s	quirrel			
		cage induction	motor											12M	2	L2

	Code:	20A241	Г
5.	List out the starting methods of an induction motor and explain the star-delta starter and autotransformer starter in detail UNIT-III	12M	2 L2
·	Explain with reasons, why single-phase induction motors are not self-starting	6M	3 L2
b)	Explain the principle of operation of a capacitor start and run induction motor with a circuit diagram.	6M	3 L2
7. a)	Explain the construction and working of split phase induction		
,	motor and its applications.	6M	3 L2
b)	Explain the construction and working of permanent split capacitor (PSC) motor	6M	3 L2
8. a)	Derive an expression for induced E.M.F per phase in a three		
,	phase alternator? Mention how different winding factors affect the induced e.m.f?	6M	4 L3
b)	Explain the MMF method of determining the voltage regulation of alternator.	6M	4 L2
	OR		
9. a)	Explain the two-reaction theory as applied to salient-pole synchronous machines and draw its phasor diagram for lagging p.f. load.	6M	4 L2
b)	Bring out the characteristics of two alternators working in parallel. What are the effects of change in excitation on load	OIVI	4 L2
	sharing?	6M	4 L3
10. a)	A 3300V, star-connected synchronous motor has synchronous impedance of 0.4+j5 per phase. For an excitation e.m.f. of 4000V and motor input power of 1000kW at rated voltage,		
L)	compute the line current and power factor.	6M	5 L4
D)	Write a short note on hunting of synchronous machines. OR	6M	5 L2
11. a)	Explain the operation of synchronous motor with constant		
/	excitation and constant load.	6M	5 L2
b)	Derive the expression for power delivered by a synchronous motor in terms of load angle (). *** End ***	6M	5 L2

		lall Ticket Number :										R-20		
	Co	de: 20AC45T II B.Tech. II Sem	ester S	laqu	leme	entar	ry E	xamin	atio	ns De	 cemb	er 2023		
			ageria	• •										
				(Co	mmo	on to	EEE	& ME)				T		
	MC	ax. Marks: 70			*	*****	***					Time: 3 H	IOUrs	
	No	te: 1. Question Paper	consists	of tv	vo pa	rts (P	art-	A and I	Part	-B)				
		2. In Part-A, each	-											
		3. Answer ALL th	e questi	ons 1				Part-B						
				(C	-	PART		estion)						
1	Δn	swer ALL the following	n short a		_	-	-	(5 X 2) – 1(C	CO E	3L
		ist the demand foreca	-				0	(0/2		5101)				_1
		lustrate Iso-quants cu	•	orning	1400									_2
		efine Oligopoly marke												_1
		Vhy capital budgeting		s also	o kno	wn as	s inv	estment	t dec	isions?		С	04 I	_2
(э) Т	he trial balance is a ra	ationale i	n pre	para	tion of	f fina	al accou	ints,	how it v	vould a	ct? C	05 I	_3
						PART	<u>-В</u>							
	Α	nswer five questions	s by cho	osin	g on	e que	estio	n from	eacl	h unit (5 x 12	= 60 Mari	(s)	
								i				Marks	CO	BL
						JNIT-								
		Under different elastic and revenue.	city of de	mano	a, exp	Diain ti	ne re	elationsr	ים מור	etween	demano	12M	CO1	L2
						OR								
3.	a)	Describe the role of r	manager	ial ec	conor	nics ir	n bu	siness c	decis	ion mal	king.	6M	CO1	L2
	b)	Discuss the nature a	nd scope	e of n	nana	gerial	eco	nomics				6M	CO1	L2
					l	JNIT–								
ł.		Explain the cost outp	out relation	onshi	p in b		hort	run and	llong	g run pe	eriod.	12M	CO2	L3
-	、		–			OR							000	
.	a) L	Define production fur From the following deta		•			0				Aorain o		CO2	L3
	b)	safety (iv) Profit and (v	,		· /				· /	()	0			
		Rs. 18,000; Variable co			; Sale	es Rs.	60,0						CO2	L3
						NIT-I								
ò.		Examine the features	of mono	poly (comp		thro	ugh app	propri	iate exa	mples.	12M	CO3	5 L2
′ .	2)	Distinguish botwoon	the parts	arch	in fire	OR m and	lioin	t ctook		2001/		6M	CO3	
•	a) b)	Distinguish between A firm under perfect	•		•		-		•	•	na nrice		003) L2
	5)	maker" explain.	compet	nion,		Seller	15 11		lanc			6M	CO3	5 L2
		·			U	NIT-I	V							
3.		Classify the capital b	udgeting	Tec	hniqu	ies an	nd ex	plain ea	ach.			12M	CO4	- L4
						OR								
).		A proposal is expect	•											
		2,000 and Rs. 2,000 outlay required is a. I			•			е раур	ack	perioa	u initia	1 12M	CO4	L4
			,0,			_,								
												Page	1 of 2	

UNIT-V

10. Prepare final accounts from the following trial balance of Snigdha Enterprises as on 31-03-2020.

Particulars	Debit Amount	Credit Amount.
Stock (1-1-2010)	3,000	
Purchases	14,000	
Fuel and gas	1,000	
Wages	3,000	
Printing & stationery	2,900	
Commission Received		6,000
Factory Rent	300	
Sales		28,800
Debtors	5,000	
Rent and Taxes	2,000	
Capital		25,000
Salaries	4,800	
Machinery	8,000	
Cash	2,000	
Creditors		5,500
Insurance	1,800	
Buildings	19,000	
Bills Payable		2,000
Furniture	4,900	
Interest received		800
Bank Overdraft		3,600
Total	71,700	71,700

Adjustments:

- a) Closing Stock Rs. 25,000.
- b) Unpaid wages Rs. 500.
- c) Outstanding salaries Rs. 1900.
- d) Depreciate Machinery by 10%.

12M CO5 L5

OR

11. a) Write the importance of final accounts preparation of an organization. 6M CO5 L5

b) Find out the current assets of a company from the following information: Inventory turnover ratio is 4 times. Inventory at the end is Rs. 20,000 more than the inventory in the beginning. Revenue from Operations Rs. 3,00,000 and gross profit ratio is 20% of revenue from operations.

Current liabilities	=	Rs.40,000	
Quick ratio	=	0.75 : 1	6M CO5 L5
	***	[*] End ***	

На	II Ticket Number :											
Co	de: 20AC42T	<u> </u>					II			R-20		
	II B.Tech. II Ser	nester Su	pplen	nentc	ary Exa	minc	atior	ns De	ecem	ber 2023		
	Nume	rical M	etho	ds ai	nd Ra	ndc) m	Var	iable	es		
		(0	Commo	on to I	EEE and	d ECE	=)			T 0.11		
Ma	x. Marks: 70			****	****					Time: 3 H	ours	
Not	e: 1. Question Pape 2. In Part-A, each 3. Answer ALL	h question	carries	Two	narks.		Part-]	B)				
		•		PAR'								
			(Com	pulsor	y questi	on)						
1. Answe	r ALL the following	g short an	swer q	uestio	ns (5 X 2	2 = 10) (M			CO	BL
a) Explai	n Bisection method	to find the	real roo	ot of the	e equatio	on f(x)=0.				CO1	L1
b) Consid	der the differential e	equation $\frac{dy}{dx}$	$\frac{v}{x} = f(x,$	y),y($x_0) = y_0$. Ехр	lain ⁻	Taylo	r's ser	ies method		
for find	ding the approximate	e solution y	/(X).								CO2	L1
	ne mean, median, ai			-				, 13,	12, 15	5, 9, 11, 16.	CO3	L2
,	a short note on Cont		•		oution fu	nctior	า.				CO4	L1
, .	probability of a defect				nial diat	ributio	n in i	o toto	J of 40	0 halta	0.05	10
(1) the	mean (ii) the standa	ind deviation		PAR		ibulic		a 1012	u 01 40	o dons.	CO5	L2
А	nswer <i>five</i> questio	ns bv cho	osina a			rom	each	unit	(5 x 1	2 = 60 Mark	s)	
			eenig e						(•	Marks	-	BL
				UNIT	I							
2. a)	Apply Newton-Rap	ohson's m	ethod t	to find	the re	eal ro	oot o	f the	equa	ation		
	$x \log_{10} x - 1.2 = 0$ by	y taking su	iitable ir	nitial ap	proxima	ation.				6M	CO1	L3
b)	From the followin quinquennial ages, 46 years.	-	-						-			
	A	ge (x):	45	50	55	60	65					
	Pre	mium (y):	2.87	2.40	2.08 1	1.86	1.71			6M	CO1	L4
				OF	र							
3. a)	Apply Regula falsi	method to	find the	e root c	of the eq	uatio	n cos	x = x	ce ^x col	rrect		
	to three decimal pla										CO1	L3
b)	Interpolate the va Lagrange's interpol			-	. ,			-	x=1 u	sing		
				0 3		301 01	uata					
		V		12 6						6M	CO1	L4
				UNIT	-11							
4. a)	Find the first and s the point $x=10$.	econd ord	er deriva	atives	of the fu	unctio	n tab	ulate	d belo	w at		
		x 2	4	6	8	10						
		y 5.5	6.1	7.2	15.3	16				6M	CO2	L4
	Evaluate the integ	ral $\int_{0}^{6} \frac{dx}{1+x^2}$	by tak	king 7	ordinate	es (i.e	e. six	c sub	interv			
	using i) Trapezoida											
										6M	CO2	L4

Code: 20AC42T

5.	Apply Euler's method to find the approximate value of y for $x = 1$, in step of												
	<i>h=0.1</i> , given that $\frac{dy}{dx} = \frac{y-x}{y+x}$, with y=1 for x=0.	12M (CO2 I	L4									
	UNIT–III												
6. a)													
01 0.	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$												
	Frequency (f) 1 5 10 6 3	6M (CO3 I	L5									
b,			505 1	LJ									
b)	between the ages of husbands (x) and wives (y) from the following data.												
		6M (CO3 I	L5									
	y 18 20 22 27 21 29 27 29 28 29 OR		505 1	LJ									
7													
7.	 Compute the rank correlation coefficient for the following data of the marks obtained by 8 students in the Physics (x) and Mathematics (y). 												
	Marks in Physics (x) 15 20 28 12 40 60 20 80												
	Marks in Mathematics (y) 40 30 50 30 20 10 30 60	12M (CO3 I	L5									
			500 1	LU									
	UNIT-IV												
8. a)													
0. a	post. The probability of husband's selection is 1/7 and that of wife's selection												
	is 1/5. What is the probability that (i) both of them will be selected? (ii) Only												
	one of them will be selected and (iii) none of them will be selected?	6M (CO4 l	L3									
b)	Three urns contain 6 red, 4 black; 4 red, 6 black; 5 red, 5 black balls												
	respectively. One of the urns is selected at random and a ball is drawn from												
	it. If the ball drawn is red find the probability that it is drawn from the first urn.	6M (CO4 I	L3									
	OR												
9.	In the following probability distribution												
	x 0 1 2 3 4 5 6												
	p(x) k 2k 3k 4k 5k 6k 7k												
	Find i) the value of 'k' ii) $P(x<5)$, $P(x=5)$, $P(0 iii) mean and iv)$												
	Variance of the distribution.	12M (CO4 I	L3									
	UNIT–V												
10. a)													
	probability that out of 10 bolts, chosen at random (i) one (ii) none (iii) at most 2 bolts will be defective.	6M (CO5 I	L6									
b,			505 1	LU									
b)	The distribution of typing mistakes committed by a typist is given below. Fit Poisson distribution, and compare the theoretical frequencies with actual												
	ones.												
	x 0 1 2 3 4 5												
	f 142 156 69 27 5 1	6M (CO5	L6									
	OR												
11.	Assuming that the average life span of computers produced by a certain												
	company is 2040 hours with standard deviation of 60 hours. Find the												
	expected number of computers whose life span is												
	(a) more than 2150 hours												
	(b) less than 1950 hours												
	(c) more than 1920 hours and less than 2160 hours from a lot size of												
	5000 computers.	12M (CO5	L6									
	*** End ***												

*** End ***

		all Ticket Number :]			
													R-20		
	Coc	le: 20A242T	o at a r Cu	احدما						1 :]	
		ll B.Tech. ll Sem	ester su ctrical (10er 2023		
			(Electric		_		_	-			_	115			
	Max	x. Marks: 70	(.9		.97		Time: 3 H	ours	
	NT - 4	1 Orestian Dense		- 6 4		****		•	. 1 D .))				
	note	2. In Part-A, each			-				iu Pa	art-r))				
		3. Answer ALL th	•						-B						
			_]	PAR'	T-A								
				(Co	ompu	ulsor	y que	estior	ı)						
1. A ı	ารพ	er ALL the following	g short a	nswe	er qu	esti	ons	(5 X 2	2 = 1	0M)			CO	BL
		e the expression for s			•	ı) in	term	s of	Rm a	and r	nultip	olying	factor (m) to		-
		d the range of given l												1	2
		are the causes for c				duct	ion ty	/pe e	energ	gy m	eter?	?		2	
,		on some application	•			ممنام	ممط	why	2					3	
		h bridge is used to me						•			nto?			4 5	
e) V	mai	are the advantages of	or digital i	nstru		PAR		lalog	insu	ume	ents :			5	1
	Ar	nswer five questions	s by cho	osin	-			on fro	om e	ach	unit	(5 x ⁻	12 = 60 Mark	s)	
			,		9 • · ·	- 4 .						(•	Marks	-	BL
						UNI	T–I								
2.	a)	Write briefly on the	various to	orque	in a	nalo	g indi	icatin	ig ins	strum	nents		6M	1	2
	b)	The coil of the 300	-	-											
		and inductance of 0. and takes 100mA at							-						
		instrument reading,							•		•		6M	1	3
						O									
3.	a)	Define limiting errors	s. Derive	the e	expre	essio	n for	relat	ive li	mitin	g err	or.	6M	1	2
	b)	The coil of a meas	0												
		instrument has a													
		4990 is connecte for the instrument t									int re	esista	nce 6M	1	3
						UNI									-
4.	a)	What are the cause					•			•••					
		Describe the method	ods tom	inimi	ze th	nese	erro	rs in	elec	tro c	lynar	no m		2	2
	b)	wattmeters? A correctly adjuste	d sinalo	nha	so 7	<u>م</u> رر	indu	ictio		tt_bc	ur m	notor	6M	Z	2
	0)	a meter constant of	•	•											
		disc, for a current	of 10A a	at a	pow	er fa	actor	of ().8 la	aggir	ng. It	f the	lag		
		adjustment is altere	-		•		-				-	s coil	flux		
		and applied voltage			ulate	the	erroi	rintro	oduc	ed a	it		CM.	0	2
		i) unity p.f. ii) 0.2 p	.r. ayyını	y		O	P						6M	2	3
5.	a)	With a neat diagram	evolain	the c	onet			detai	ls an	d wo	rkina	Inring	vinle		
0.	u)	of an electrodynamo	•					acial		u wu	iniy	Pinc	6M	2	2
		,		•											

		Cod	e: 20A24	42T	
	b)	The current and flux produced by series magnet of an induction watt-hour meter are in phase but there is an angular departure of 3 degrees from quadrature between voltage and the stunt magnet flux. The speed of disc at full load and unity power factor is 40 rpm. Assuming the meter to resist correctly under this condition, calculate its speed at ¼ full load and 0.5 power factor lagging. Also find the percentage error.	6M	2	4
			OW	2	4
6.	a)	Explain the functioning of Ferro-dynamic type electrical resonance			
-	- /	frequency meter.	6M	3	2
	b)	Power is measured with an a.c. potentiometer. The voltage across a 0.1 ohm standard resistance connected in series with the load is 0.35-j0.10 V. The voltage across 300:1 potential divider connected to the supply is 0.8+ j0.15V. Determine the power consumed by the load and the power factor.	6M	3	4
		OR	OIVI	5	-
7					
7.	a)	Explain in detail about the laboratory type DC potentiometer. And give the applications of AC potentiometers.	6M	3	2
	b)	Design a volt ratio box with a resistance of 20ohm/volts and ranges 50V, 100V, 150V, 300V. The volt ratio box is to be used with a potentiometer			
		having a measuring range of 1.7V.	6M	3	4
0	、				
8.	a)	Draw the circuit of a Kelvin's double bridge used for measurement of low resistances. Derive the condition for balance.	6M	4	3
	b)	The four arms of a Wheatstone bridge are as follows: AB=200 , BC=2000 , CD=4000 and DA=400 . The Galvanometer has aresistance of 15 , a sensitivity of 100 mm/ μ A and is connected across arm AC. A source of 5V DC is connected across the terminals BD. Calculate the current through the galvanometer and its deflection if the resistance of arm DA is changed from 400 to 405 .	6M	4	5
		OR			
9.	a)	Explain construction and working principle of Desauty's bridge used for			
	- /	measurement of capaciynace with neat diagram.	6M	4	3
	b)	In an Anderson's bridge for the measurement of inductance the arm AB consists of an unknown impedance with L and R , a known variable resistance in arm BC, fixed resistance of 600 each in arms CD & DA, a known variable resistance in arm DE, and a capacitor with fixed capacitance of 1 μ F in the arm CE. The a.c supply of 100 Hz is connected across A and C, and the detector is connected between B &E, If the balance is obtained with a resistance of 400 in the arm DE and a resistance of 800 in the arm BC, Calculate the value of unknown R and L.	6M	4	5
		UNIT–V			
10.	a)	Explain the construction and working of a Digital Volt Meter (DVM) with a block diagram?	6M	5	2
	b)	A 3½ digit voltmeter is used for measuring voltage			
		(i) Find the resolution of the instrument.			
		(ii) How would a reading of 14.53 V be displayed on 100 V scale?	6M	5	3
		OR			
11.	a)	If a 4 digit DVM is used to measure 10.225 volts what should be the reading			
	·	of the meter if 10 V range is selected?	6M	5	3
	b)	Explain the construction and working of smart energy meter.	6M	5	2
		*** End ***			
				of J	