		lall Ticket Number :										R-20		
	Co	de: 20AC45T II B.Tech. II Sem	ester S	laqu	leme	entar	ry E	xamin	atio	ns De	 cemb	er 2023		
			ageria	• •										
				(Co	mmo	on to	EEE	& ME)				T		
	MC	ax. Marks: 70			*	****	***					Time: 3 H	IOUrs	
	No	te: 1. Question Paper	consists	of tv	vo pa	rts (P	art-	A and I	Part	-B)				
		2. In Part-A, each	-											
		3. Answer ALL th	e questi	ons 1				Part-B						
				(C	-	PART Jsory		estion)						
1	Δn	swer ALL the following	n short a		_	-	-	(5 X 2) – 1(C	CO E	3L
		ist the demand foreca	-				0	(0/2		5101)				_1
		lustrate Iso-quants cu	•	orning	1400									_2
		efine Oligopoly marke												_1
		Vhy capital budgeting		s also	o kno	wn as	s inv	estment	t dec	isions?		С	04 I	_2
(э) Т	he trial balance is a ra	ationale i	n pre	para	tion of	f fina	al accou	ints,	how it v	vould a	ct? C	05 I	_3
						PART	<u>-В</u>							
	Α	nswer five questions	s by cho	osin	g on	e que	estio	n from	eacl	h unit (5 x 12	= 60 Mari	(s)	
								i				Marks	CO	BL
						JNIT-								
		Under different elastic and revenue.	city of de	mano	a, exp	Diain ti	ne re	elationsr	ים מור	etween	demano	12M	CO1	L2
						OR								
3.	a)	Describe the role of r	manager	ial ec	conor	nics ir	n bu	siness c	decis	ion mal	king.	6M	CO1	L2
	b)	Discuss the nature a	nd scope	e of n	nana	gerial	eco	nomics				6M	CO1	L2
					l	JNIT-								
ł.		Explain the cost outp	out relation	onshi	p in b		hort	run and	llong	g run pe	eriod.	12M	CO2	L3
-	、		–			OR							000	
.	a) L	Define production fur From the following deta		•			0				Aorain o		CO2	L3
	b)	safety (iv) Profit and (v	,		· /				· /	()	0			
		Rs. 18,000; Variable co			; Sale	es Rs.	60,0						CO2	L3
						NIT-I								
ò.		Examine the features	of mono	poly (comp		thro	ugh app	propri	iate exa	mples.	12M	CO3	5 L2
′ .	2)	Distinguish botwoon	the parts	arch	in fire	OR m and	lioin	t ctook		2001/		6M	CO3	
•	a) b)	Distinguish between A firm under perfect	•		•		-		•	•	na nrice		003) L2
	5)	maker" explain.	compet	nion,		Seller	15 11		lanc			6M	CO3	5 L2
		·			U	NIT-I	V							
3.		Classify the capital b	udgeting	Tec	hniqu	ies an	nd ex	plain ea	ach.			12M	CO4	- L4
						OR								
).		A proposal is expect	•											
		2,000 and Rs. 2,000 outlay required is a. I			•			е раур	ack	perioa	u initia	1 12M	CO4	L4
			,0,			_,								
												Page	1 of 2	

UNIT-V

10. Prepare final accounts from the following trial balance of Snigdha Enterprises as on 31-03-2020.

Particulars	Debit Amount	Credit Amount.
Stock (1-1-2010)	3,000	
Purchases	14,000	
Fuel and gas	1,000	
Wages	3,000	
Printing & stationery	2,900	
Commission Received		6,000
Factory Rent	300	
Sales		28,800
Debtors	5,000	
Rent and Taxes	2,000	
Capital		25,000
Salaries	4,800	
Machinery	8,000	
Cash	2,000	
Creditors		5,500
Insurance	1,800	
Buildings	19,000	
Bills Payable		2,000
Furniture	4,900	
Interest received		800
Bank Overdraft		3,600
Total	71,700	71,700

Adjustments:

- a) Closing Stock Rs. 25,000.
- b) Unpaid wages Rs. 500.
- c) Outstanding salaries Rs. 1900.
- d) Depreciate Machinery by 10%.

12M CO5 L5

OR

11. a) Write the importance of final accounts preparation of an organization. 6M CO5 L5

b) Find out the current assets of a company from the following information: Inventory turnover ratio is 4 times. Inventory at the end is Rs. 20,000 more than the inventory in the beginning. Revenue from Operations Rs. 3,00,000 and gross profit ratio is 20% of revenue from operations.

Current liabilities	=	Rs.40,000	
Quick ratio	=	0.75 : 1	6M CO5 L5
	***	End ***	

		mber:											
	Code: 20AC411	•									R-20)	
			nester	Supple	emen	itarv E	xam	ninati	ons D	ecem	ber 2023		
				robab									
		(C		n to CE	-					L)			
	Max. Marks: 70	(0			_,,	001,				,	Time: 3	Hours	
					***	*****							
	Note: 1. Question	-			-			nd Pa i	rt-B)				
	2. In Part-		-					D					
	3. Answer	ALL t	he ques	tions in			Part	-В					
						RT-A							
					-	ory qu							
	Answer ALL the f		-		-				= 10M	,		CO	BL
a)	Define Correlation coefficient of corr			o variab	les. A	lso wr	te th	e forn	nula fo	r Karl	Pearson's	CO1	L1
b)	Two dice are thro	wn. Let	t A be th	ne event	that t	he sum	of th	ne poir	nts on tl	ne face	s is 9. Let		
	B be the event th	at at lea	ast one	number	is 6.F	ind (i) l	P(A	B) (ii)F	P(AUB)			CO2	L3
c)	What is Binomia	l distrib	oution fu	inction?	Write	the fo	ormula	ae for	mean	and va	ariance of		
	Binomial distribut	ion.										CO3	L1
d)	A random sample						on of	5.wha	t can y	ou say	about the		
	maximum error o											CO4	L3
e)	For F -distributior	n , find I	F _{0.05} with	ר v₁ =7 a								CO5	L3
						ART-B							
	Answer <i>five</i> q	uestion	ns by ch	noosing	one	questic	on fro	om ea	ch unit	(5 x 1		-	
											Marks	s CO	BL
					U	NIT-I							
2.	Find mean , m	nedian a	and mod	de for th	e follo	wing d	ata:						
	Class	0-10	10-20	20-30	30-4	0 40-	50 4	50-60	60-70	70-8	0		
	interval	0.10	10 20	20 00					0010	100			
	Frequency	5	8	7	12	28	3	20	10	10	12N	1 CO1	I L3
						OR							
3.	From the follo	wing da	ata calcu	ulate the	rank	correla	tion o	coeffic	ient				
	X	48 3	3 40	9	16	16	65	24	16 క	57			
	Y	13 1	3 24	6	15	4	20	9	6 ′	19	12N	I CO1	I L3
					U	II–TIV							
4.	Suppose a co	ntinuou	is rando	om varia	ble X	has the	e prot	bability	/ densit	y funct	ion		
	$f(x) = K(1-x^2) f(x)$	or 0 <x<< td=""><td>1, and f</td><td>(x)=0 otl</td><td>herwis</td><td>se.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></x<<>	1, and f	(x)=0 otl	herwis	se.							
	Find (i) K (ii)	Mean (i	ii) Varia	nce							12N	1 CO2	2 L3
						OR							
5.	A random var	iable X	has the	followin	g prot	oability	funct	tion:					
	X 1	2	3	4	5	6	7	•	8				
	P(X) K	2K	3K	4K	5K	6K	7	۶ ۲	3K				
	Find the value										121	1 CO2	2 L3
				,	, and						1210		0

Hall Ticket Number :

]				
ł	Hall Ticket Number :													R-20)	
С	code: 20A341T				1	1		-	•			L				
	ll B.Tech. II Ser	mesi					-				ns D	ecemi	oer	2023		
					-		Ma I Eng									
Ν	1ax. Marks: 70			1110	Chu	nco		JIIICO		91			Tir	me: 3	Нс	ours
			•	C .			*****		1 1		D)					
N	lote: 1. Question Pape 2. In Part-A, each								ind I	art-	·B)					
	3. Answer ALL	_							t-B							
			L				RT-A									
				(0	Comp	oulso	ry qu	iestio	n)							
	1. Answer ALL the f	ollow	ving s	short	ansv	ver q	luesti	ons	(5 X :	2 =	10M)		CO	В	L
	a) Define mechanis	sm.												CO1	Ľ	2
	b) Define instantan														Ľ	
	c) Write the expres		0.		•			Ŭ	pitc	hing	of a	ship.			Ľ	
	d) Define swaying (-								(*			L	
	e) Distinguish betw	een I	ongi	udin	al, tra				orsi	onal	vibra	tions.		CO5	Ľ	2
	Answer five questio	ns h	v ch	nnsii	າດ ດ		<u>RT-B</u> uesti		om	each	uni	t (5 x 1	2 - (60 Mar	ke	•
			y 011	0031	ig o	ne q	4650	01111	0	cuoi			`	Mark		CO
						UN	IT–I								•	•••
a)	What do you mean	by o	const	raine	d m			nat a	re t	he d	iffere	nt types	s of			
	constrained motions?	-		ach t	ype v	with e	exam	ples a	and v	with r	neat s	sketches		61	N	CO1
b)	Define the following				l- !	-	: .) I.a							~		004
	i) Link ii) Mechar	lism	I	ii) Ma	achin		iv) In	versi	on					61	VI	CO1
	Explain with sketche	ا الد و	invor	eione	s of c		R In slic	lor cr	ank	chai	n			121	Л	CO1
		5 011		310113			IT–II		ank	Chan	1.			121	VI	001
	The crank of a slider	· crar	nk me	echai	nism			lock	wise	at a	cons	stant sp	eed			
	of 300 r.p.m. The ci								•				•			
	Determine: 1. Linear velocity of the conne		•		•					-		•				
	position.	Joing	, iou	, ai c		iik ai	ligie	01 40	no.				шe	121	N	CO2
						0	R									
	A ship is propelled b	y a t	urbin	ie rot	or ha	aving	g a m	ass (of 6	tonne	es ar	nd speed	d of			
	2400 rpm. The direc															
	stern. The radius of effect when (i) The s															
	of 18 knots(1 knot =	-				-										
	7.5 degrees below			•								•				
	maximum velocity. T of 18 seconds (iii)	-		-			•				-					
	0.035 rad/s counter		•								•	•				
	maximum angular ad	cele	ratior	n dur	ing p	itchi	ng.							12	N	CO2

		UNIT–III			
6.	a)	Derive an expression for length of path of contact between two mating gears.	5M	CO3	L4
	b)	Two mating gears have 50 and 13 involute teeth of module 10 mm and 20° pressure angle. The addendum is one module. Does the interference occur? If it occurs, to what value should the pressure angle be changed to eliminate	-71.4	000	
		interference?	<i>i</i> IVI	CO3	L4
7		OR The error of an anisystic mean train retates at 100 mm in the anti cleaturing			
7.		The arm of an epicyclic gear train rotates at 100 r.p.m in the anti-clockwise direction. The arm carries two wheels A and B having 36 and 45 teeth respectively. The wheel A is fixed and the arm rotates about the centre of wheel A. Find the speed of wheel B. What will be the speed of B, if the wheel A instead of being fixed, makes 200 r.p.m. clockwise?	12M	CO3	L4
		UNIT–IV			
8.		A, B, C and D are four masses carried by a rotating shaft at radii 100, 125, 200 and 150 mm respectively. The planes in which the masses revolve are spaced 600 mm apart and the mass of B, C and D are 10 kg, 5 kg and 4 kg respectively. Find the required mass A and the relative angular settings of the four masses so that the shaft shall be in complete balance.	12M	CO4	L4
		OR			
9.		The cranks of a two cylinder, uncoupled inside cylinder locomotive, are at right angles and are 300 mm long. The cylinders are 700 mm apart. The rotating mass per cylinder is 150 kg at the crank pin and the mass of the reciprocating parts per cylinder is 180 kg. The wheel centre lines are 1.5 m apart. The whole of the rotating and 60% of the reciprocating masses are to be balanced and the balance masses are to be placed in the planes of the rotation of the driving wheels at a radius of 600 mm. Find (i) the magnitude and direction of balancing masses (ii) the magnitude of hammer blow (iii) variation in tractate force Take crank speed =150 rpm	12M	CO4	L4
				004	L4
10.		Derive natural frequency of spring mass system according to			
10.		i) Energy method ii) Equilibrium Method	12M	CO5	L4
		OR			
11.		A shaft of 40 mm diameter and 2.5 m length has a mass of 15 kg per meter length. It is simply supported at the ends and carries three masses of 90 kg, 140 kg and 60 kg at 0.8 m, 1.5 m and 2 m respectively from the left support. Taking $E = 200 \text{ GN/m}^2$, find the frequency of the transverse vibrations.	12M	CO5	L4

*** End ***

~	ode: 20A343T	R-20		
C	II B.Tech. II Semester Supplementary Examinations Decembe	er 2023		
	Design of Machine Elements - I			
	(Mechanical Engineering)			
Ν	1ax. Marks: 70 1	ime: 3 H	ours	
N	Tote: 1. Question Paper consists of two parts (Part-A and Part-B)			
1,	2. In Part-A, each question carries Two marks .			
	3. Answer ALL the questions in Part-A and Part-B			
	PART-A			
	(Compulsory question)			
	1. Answer ALL the following short answer questions $(5 \times 2 = 10M)$	CO	BL	
	a) Define factor of safety	CO1	L1	
	b) Define notch sensitivity	CO2	L1	
	c) What are the advantages of welded joints compared with riveted joints?	CO3	L1	
	 d) What is the effect of keyway cut into the shaft 	CO4	L1	
	e) What is the function of coupling	CO5	L1	
	PART-B			
	Answer <i>five</i> questions by choosing one question from each unit (5 x 12 =			
		Marks	CO	
a)	UNIT-I Define the terms: (i) Stiffness (ii) toughness (iii) Resilience (iv) malleability	6M	CO1	
b)	A steel plate of section 50 x 10 mm is bent into an arc of 1000 mm radius		001	
~)	Determine the bending stress induced and the bending moment required to			
	bend the plate. Take $E = 2.1 \times 10^5 \text{ MPa}$.	6M	CO1	
	OR			
	The stresses induced at a critical point in a machine component made of stee 45C8 (S_{yt} =380 N/mm ²) are as follows.	9		
	$t_x = 100 \text{ N/mm}^2$ $t_y = 40 \text{ N/mm}^2$ $t_{xy} = 80 \text{ N/mm}^2$	12M	CO1	
	UNIT–II			
a)	What is stress concentration? Explain the methods of reducing stress concentration.	6M	CO2	
b)	Explain modified Goodman diagram for bending stresses	6M	CO2	
	OR			
	A rod of circular cross section is subjected to an alternating tensile force varying from 20 kN to 70 kN. Determine the diameter of the rod, according to (i) Goodman method (ii) Soderberg method; using the following material properties: Ultimate tensile strength = 1000 Mpa, Yield strength = 550 Mpa Take factor of safety as 2. Neglect stress concentration effect and other) 		
	correction factors.	12M	CO2	
	A wall bracket is attached to the wall by means of four identical bolts, two at A and two at B as shown in Fig.1 . Assuming the bracket is held against the wa and prevented from tipping about the point C by all four bolts and using an allowable tensile stress = 35 N/mm2, determine the size of the bolts on the	וו ר		

2M CO3 L2

- 7. a) List the advantages and disadvantages of welded joints over riveted joints.
 - b) A rectangular cross-section bar is welded to a support by means of fillet welds as shown in Fig.2. Determine the size of the welds, if the permissible shear stress in the weld is limited to 75 MPa.

- 10M CO3 16 **UNIT-IV** 8. a) Prove that a square key is equally strong in shear and compression 6M CO4 14 A standard splined connection 8X36X40 is used for a gear and shaft assembly b) rotating at 700 rpm. The length of the gear hub is 50 mm the normal pressure on the spines is limited to 6.5 N/mm2. Calculate the power that can be transmitted form gear to shaft. 6M CO4 L6 OR 9. Design a cotter joint of socket and spigot type, which may be subjected to a pull or push of 30 kN. All the parts of the joint are made of the same material with the permissible stresses; 55 MPa in tension, 70 MPa in compression and 40 MPa in shear. 12M CO4 L6 UNIT-V 10. Design a shaft to transmit power from an electric motor to a lathe head stock through a pulley by means of a belt drive. The pulley weighs 200 N and is located at 300 mm from the centre of the bearing. The diameter of the pulley is 200 mm and the maximum power transmitted is 1 kW at 120 r.p.m. The angle of wrap of the belt is 180° and coefficient of friction between the belt and the pulley is 0.3. The shock and fatigue factors for bending and twisting are 1.5 and 2.0 respectively. The allowable shear stress in the shaft may be taken as 35 MPa. 12M CO5 L6 OR State the function of coupling 11. a) 2M CO5 11
 - b) Design a clamp coupling of cast iron to connect two shafts transmitting 20kW at 1400 rpm and capable of resisting 20 % over load. The shaft and key materials are the same with 50 mpa as permissible shear stress .Take the permissible shear stress for the sleeve material as 15 mpa, assume the no.of bolts to be 4 and taking the permissible tensile stress for the bolt material as 70 mpa and coefficient of friction between the shaft and sleeve as 0.03
 10M CO5

*** End ***

L6

		Hall Ticket Number :										
	С	ode: 20A342T		II			I			R-20		
		II B.Tech. II Seme	ester Suppl	emei	ntary	Exam	inat	ions De	cember 2	023		
		Fluid	l Mechani		-			Aachin	es			
	N.	1ax. Marks: 70	(Mec	hanic	al Eng	gineer	ing)		Tim	e: 3 Ho	irs	
	1.			**	*****	*				0.0110	015	
	N	ote: 1. Question Paper of 2. In Part-A, each of 3. Answer ALL the	question carr	ies T w	vo ma	rks.		rt-B)				
				<u>P</u>	ART-A	<u>\</u>						
				-	• •	uestion						
		Answer ALL the followi	-		-	•					CO	BL
a)	•	late is 0.254 mm distan l/m ² force to maintain this es.		•					•	•	1	3
b)		e the physical significanc ber.	ce of the friction	on fact	tor and	l identif	y its o	dependen	icy on the R	eynold	2	2
c)		5 mm diameter water jet to the jet. Determine the	•	•				at plate, v	which is incl	ined at	3	3
d)	Wha	at is a draft tube? Why is	s it used in a i	eactio	on turb	ine?					4	2
e)	Wha	at is priming? Why is it n	needed before	starti	ng a c	entrifug	jal pu	imp?			5	2
					ART-E	-						
		Answer <i>five</i> questions	s by choosir	ng one	e ques	tion fr	om e	ach unit	(5 x 12 = 60	-		
					INIT-I					Marks	CO	BL
2.		Highlight the importance	ca of Viscosit			ineerin	n don	nain $\Delta 2($) mm wide			
2.		 gap between two vertic and dynamic viscosity cm with a weight of 3 diagram for the arrange (i) The force required (ii) The shear stress d 	cal plane surfa of 2.5 Ns/m ² . 30 N is place ement and de to lift the pla	A ces is A me d mid termir te with	s filled etal pla I-way ne the n a velo	with oil te of si in the followir	of sp ze 1.: gap. ng.	ecific gra 25 m x 1. Give the	vity of 0.85 25 m x 0.2	12M	1	5
					OR							
3.		The velocity componen u = y ³ + 6 x - 3 x ² y ; v = (i) Continuous and/or		•				•	d as			
		(ii) Ir-rotational. If the fl and stream function. streamline, streakline, a	Give a cas	e with of a flo	n suita	able ju coincio	stifica	•	• ·	12M	1	5
4.	a)	Water flows at 75 lit/s in and 150 mm, respectiv If the pressure at sect Neglect energy loss be	vely, which ar tion 1 is 450	ng dia e at he kPa,	meters eights deterr	s at sec 5 m ar	nd 3	m above	the datum.	4M	2	3
	b)	A venturi meter is prov discharge of 62.8 lit/s. the throat diameter of there. The throat is 2 m	vided in a 200 For a gauge the venturi m higher than) mm (press neter if the ve	diamet sure of f it has nture i	100 kl s to pro nlet. Ta	Pa in oduce ake at	the pipe, cavitatio	determine n pressure		-	
		as 101.3 kPa and vapo	or pressure as	\$ 2.39		osolute	•			8M	2	5
5.	a)	Obtain an expression f	for the Darow	.W/Dick	OR Dach fr	iction f	actor	for the la	aminar flow			
5.	aj	in a pipe.		**0131			00101			5M	2	3

7M

12M

2

3

3

4

5

2

5

5

b) Two pipes each 400 mm long are available for connecting to a reservoir from which a flow of 0.10 m³/s is required. If the diameters of the two pipes are 0.30m and 0.15 m, respectively, determine the ratio of the head loss when the pipes are connected in series to the head loss when they are connected in parallel. Neglect minor losses.

UNIT–III

6. A water jet having a velocity of 36 m/s strikes a series of radial curved vanes mounted on a wheel that is rotating at 240 rpm. The jet makes an angle of 20° with the tangent to the wheel at the inlet and leaves the wheel with a velocity of 6 m/s at an angle of 130° to the tangent to the wheel at the outlet. Water is flowing from outward in a radial direction. The outer and inner radii of the wheel are 500 mm and 250 mm, respectively. Determine the following.

i) Vane angles at the inlet and outlet ii)Work done per second per 'N' of water
 iii) Efficiency of the wheel

- OR
- What do you mean by Hydroelectric power plant? List out different elements of the plant. Emphasize the basis for the selection and classification of these plants. Give the detailed construction and working principle of the Hydroelectric plant.
 12M

UNIT–IV

8. A Pelton wheel turbine working under a head of 359 m runs at 750 rpm and generates 9560 kW. The various parameters of the turbine are; Overall efficiency = 85%, Jet ratio = 6, Coefficient of velocity = 0.985, Speed ratio=0.45, No. of poles in generator = 36. Assuming suitable data, determine the following.
i) Runner diameter ii) Jet diameter iii) No. of jets required iv) Synchronous speed of the generator v) Specific speed of the turbine 12M

OR

9. An inward flow reaction turbine is working under a head of 15 m with a speed of 300 rpm. The inner and outer diameter of its runner is 500 and 750 mm, respectively. The runner width at the inlet is 70 mm. The radial component of fluid velocity is constant from inlet to outlet and is equal to $0.2\sqrt{2gh}$, where h is the turbine head. Water leaves the wheel radially. The blade efficiency is 95% and the overall efficiency of the turbine is 85%. Assuming suitable data, calculate the following.

i) Angle of guide vanes ii) Angle of moving vanes at inlet and outlet

iii) Water flow rate iv) Width of the runner at the outlet 12M 4 5

UNIT–V

10. A single-acting reciprocating pump has a piston diameter of 0.15 m and a stroke length of 0.3 m. The center of the pump is 5 m above the water level in the sump and 33 m below the delivery water level. The lengths of the suction and delivery pipes are 6.5 m and 39 m, respectively and both the pipes have the same diameter of 75 mm. If the pump is working at 30 rpm, determine the pressure head on the piston at the beginning, middle, and end of both suction and delivery stroke. Also, determine the power required to drive the pump. Take atmospheric pressure as 10.3 m of water and Darcy's friction factor for both pipes as 0.04.

OR

11. A four-stage centrifugal pump with identical impellers develops a total head of 80 m when running at 500 rpm. The outer diameter of the impeller is 65 cm and the width at the outlet is 55 mm. The discharge is 220 lit/s. The vane angle at the outlet is 35°. The flow at the inlet is radial. Determine the manometric efficiency of the pump.

12M

12M

5

5

5

5