Hall Ticket Number :
\square
Code: 20A442T
R-20
II B.Tech. II Semester Supplementary Examinations December 2023
Communication Systems(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two marks.
3. Answer ALL the questions in Part-A and Part-B
PART-A
(Compulsory question)

1. Answer ALL the following short answer questions (5 X $2=10 \mathrm{M}$) CO BL
a) What is the need for modulation? CO1 L2
b) Define frequency modulation. CO2 L1
c) Compare PWM and PPM. CO3 L4
d) What is the main idea of Companding? CO4 L2
e) Differentiate various Passband data transmission. CO5 L4
PART-B
Answer five questions by choosing one question from each unit ($5 \times 12=60 \mathrm{Marks}$)

UNIT-I

2. a) Explain the generation of $A M$ signals using square law modulator with suitable diagram and expressions.
b) Evaluate the percentage of power saving in SSB-SC with respect to AM. 6M CO1 L3
OR
3. a) Compare AM, DSB-SC and SSB-SC. 6M CO1 L2
b) Sketch the circuit diagram of ring modulator and explain how DSB-SC waveform is generated. $6 \mathrm{M} \mathrm{CO1} \mathrm{L3}$
UNIT-II
4. a) Draw the spectral representation of FM wave and derive the expression for total transmission bandwidth. $6 \mathrm{M} \mathrm{CO2} \mathrm{~L} 3$
b) Explain the direct method of generation of FM signal using relevant diagrams. 6 M CO 2 L 2
OR
5. a) Construct a Foster-Seeley discriminator to demodulate a FM signal and explain 6M CO2 L6
b) A 107.6 MHz carrier signal is frequency modulated by a 7 KHz sine wave. The resultant FM signal has a frequency deviation of 50 KHz . Determine the modulation index, the highest and the lowest frequencies attained by the modulated signal.

6M CO2 L5

UNIT-III

6. a) Explain the generation of PAM signals.
b) Demonstrate the demodulation of PWM signal.

6 M CO3 L2

OR
7. a) Illustrate how PPM signal can be generated from PWM signal.
b) Compare the merits and demerits of PAM, PWM and PPM signals with applications.

6M CO3 L6
$6 \mathrm{M} \mathrm{CO3} \mathrm{L2}$

UNIT-IV

8. a) Illustrate the working of delta modulation system with a neat block diagram.
b) Drive an expression for output signal power to Quantization noise in a PCM system.
$6 \mathrm{M} \mathrm{CO4} \mathrm{L2}$
$6 \mathrm{M} \mathrm{CO4} \mathrm{L3}$

OR

9. a) Explain the block diagram of digital communication system.
b) The bandwidth of a video signal is 4.5 MHz . This signal is to be transmitted using PCM with the number of quantization levels $Q=1024$. The sampling rate should be 20% higher than the Nyquist rate. Calculate the system bit rate.
$6 \mathrm{M} \mathrm{CO4} \mathrm{L5}$

UNIT-V

10. a) Explain with neat block diagram the generation and recovery of DPSK signals.
$6 \mathrm{M} \mathrm{CO5} \mathrm{~L} 2$
b) The bit stream $\mathrm{d}(\mathrm{t})$ is to be transmitted using DPSK. If $\mathrm{d}(\mathrm{t})$ is 001010011010 . Determine $\mathrm{b}(\mathrm{t})$ and draw the waveforms.

6M CO5 L6

OR

11. a) Draw and explain the operation of transmitter and receiver of a coherent FSK.
$6 \mathrm{M} \mathrm{cos} \mathrm{L2}$
b) Illustrate the BPSK system and discuss its bandwidth requirement.

6M CO5 L3
\square

Code: 20A443T

II B.Tech. II Semester Supplementary Examinations December 2023

Electromagnetic Theory

(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two marks.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer ALL the following short answer questions ($5 \times 2=10 \mathrm{M}$) $\mathrm{CO} \quad \mathrm{BL}$
a) List out the properties of the gradient of a scalar field. CO1 L4
b) Define Coulomb's law of force.

CO2 L1
c) Discuss Polarization in dielectrics. CO3 L2
d) Illustrate Maxwell's equations for static EM fields.

CO4 L3
e) Determine the characteristic impedance of a transmission Line with impedance and admittance of 16 and 9 respectively.

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=\mathbf{6 0}$ Marks)

UNIT-I

2. a) Express $A=p z \sin \emptyset \mathbf{a}_{\mathbf{p}}+3 \rho \cos \emptyset \mathbf{a}_{\emptyset}+\rho \cos \emptyset \sin \emptyset \mathbf{a}_{\mathbf{z}}$ in spherical co-ordinates.
b) Calculate differential length, differential surface, and differential volume for all three coordinate systems.
$6 \mathrm{M} \mathrm{CO1}$ L3

OR

3. a) Express the following points $\mathrm{P}\left(1,60^{\circ}, 2\right), \mathrm{Q}(4, \pi / 2, \pi / 6)$ in cartesian co-ordinates.
$6 \mathrm{M} \mathrm{CO1} \mathrm{L1}$
b) Find the gradient of the given scalars.
i) $V=4 x z^{2} \quad \mid 3 y z$.
ii) $W=2 \rho\left(z^{2}+1\right) \cos \emptyset$.
$6 \mathrm{M} \mathrm{CO1} \mathrm{L3}$

UNIT-II

4. a) State Gauss's law. Derive the expression for Electric Field intensity due to an infinite sheet of charge using Gauss's law.
b) A Charge of -0.3 C is located at $\mathrm{A}(25,-30,15$) (in cm) and a second charge of 0.5 C is at $\mathrm{B}(-10,8,12) \mathrm{cm}$. Find Electric field intensity at (i) the origin (ii) $\mathrm{P}(15,20,50) \mathrm{cm}$. 6M CO2 L3

OR

5. a) Point charges 5 nC and -2 nC are located at (2, 0, 4) and $(-3,0,5)$, respectively. Determine the force on a 1 nC point charge located at $(1,-3,7)$.
b) Derive the relationship between electric field intensity and electric potential.
$6 \mathrm{M} \mathrm{CO2}$ L3
$6 \mathrm{M} \mathrm{CO2}$ L6

UNIT-III

6. a) Moist soil has a conductivity of 10^{-3} siemens $/ \mathrm{m}$ and $\varepsilon_{r}=2.5$. Evaluate J_{c} and J_{d} where $E=6 \times 10^{-6} \sin \left(9 \times 10^{9} t\right) \mathrm{V} / \mathrm{m}$.
b) Derive Poisson's and Laplace's equations starting from Gauss's law?

OR

7. a) In free space, $V=x^{2} y(z+3) V$. Find E at (3, 4, -6).
b) A spherical capacitor with $\mathrm{a}=1.5 \mathrm{~cm}, \mathrm{~b}=4 \mathrm{~cm}$ has an inhomogeneous dielectric of $\varepsilon=10 \varepsilon_{0}$. Calculate the capacitance of the capacitor.

UNIT-IV

8. a) Write about Ampere's circuit law and calculate current density at $(2,-1,3)$ due to magnetic field intensity of $H=x y^{2} a_{x}+x^{2} z a_{y}-y^{2} z a_{z} A / m$.
b) Derive an expression for magnetic field strength \mathbf{H} due to a current carrying conductor of finite length using Biot Savart's law.
$6 \mathrm{M} \mathrm{CO4} \mathrm{L2}$
$6 \mathrm{M} \mathrm{CO4} \mathrm{L6}$

OR

9. a) Given the magnetic vector potential $\mathbf{A}=-\rho^{2} / 4 \mathbf{a}_{z} \mathrm{wb} / \mathrm{m}$. Calculate the total magnetic flux passing the surface if $\phi=\pi / 2,1 \leq \rho \leq 2 m, 0 \leq z \leq 5 m$.
b) Derive the expression for the energy stored in magnetostatic fields.
$6 \mathrm{M} \mathrm{CO4} \mathrm{L3}$
6M cO4 L6

UNIT-V

10. a) Develop the voltage and current equations for transmission lines.
b) Describe the configuration and applications of smith chart.

OR

11. a) State and prove the Poynting theorem.
b) A uniform plane wave at a frequency of 1 GHz is travelling in a large block of Teflon ($\varepsilon_{r}=2.1, \mu_{r}=1$ and $\sigma=0$). Determine γ, β, η and λ.

6M CO5 L6
$6 \mathrm{M} \mathrm{CO5}$ L2
$6 \mathrm{M} \mathrm{CO5} \mathrm{~L} 1$

6 M CO5 L3
\square

Code: 20A441T

II B.Tech. II Semester Supplementary Examinations December 2023

Linear IC Applications

(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two marks.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer ALL the following short answer questions ($5 \times 2=10 \mathrm{M}$) CO BL
a) Mention the characteristics of an ideal op-amp.

CO1 L2
b) What are the applications of V-I and I-V converters?

CO2 L3
c) What are the applications of integrator and differentiator?

CO3 L3
d) Define capture range and lock range in PLL.

CO4 L1
e) What are the different techniques for DAC? CO5 L4
PART-B
Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)
Marks CO BL

UNIT-I

2. a) Write short notes on classification of IC.

6M CO1 L2
b) Draw the schematic block diagram of the basic Op-amp. Explain the significance of virtual ground in basic inverting op-amp. How would you explain its existence?

6M CO1 L4 OR
3. Analyze various DC and AC characteristics of an op-amp. 12 M CO1 \quad L4

UNIT-II

4. a) Explain the three basic op-amp configurations.
$6 \mathrm{M} \mathrm{CO2}$ L2
b) Draw the circuit diagram of an op-amp differentiator and derive an expression for the output in terms of the input.

6M CO2 L5

OR

5. a) Draw the circuit diagram of instrumentation amplifier using 741 op - amp and explain its operation.

6 M CO L4
b) An op-amp is being used as voltage-to-current converter. The value of resistance used in the circuit R is $6.8 \mathrm{k}, R_{L}$ $=2 \mathrm{k}, \mathrm{V}_{1}=5 \mathrm{~V}, \mathrm{~V}_{2}=0 \mathrm{~V}$. Determine the values of $\mathrm{I}_{\mathrm{L}}, \mathrm{V}_{\mathrm{L}}$ and V_{o}. Draw the circuit.

UNIT-III

6. a) Draw the circuit diagram of astable multivibrator using opamp and explain its operation with relevant sketches.

6 M CO3 L4
b) Draw the circuit of saw tooth wave generator and explain its working.
$6 \mathrm{M} \mathrm{CO3} \mathrm{~L} 2$

OR

7. a) With the help of neat circuit diagram explain the working of a logarithmic amplifier,
b) What is precision rectifier? Explain the principle of operation of a precision half wave rectifier with waveforms.
$6 \mathrm{M} \mathrm{CO3} \mathrm{L4}$

UNIT-IV

8. a) Draw the functional diagram of 555 timer and discuss its operation.
$6 \mathrm{M} \mathrm{CO4} \mathrm{L2}$
b) Explain the operation of an astable multivibrator using 555 timer. Derive the expression for on and off state time periods.

6 M CO4 L5

OR

9. a) Explain the operation of a Schmitt trigger using IC 555.

6 M CO 4 L 2
b) Draw the block diagram of generation of FSK using a PLL. Explain its function.
$6 \mathrm{M} \mathrm{CO4} \mathrm{L5}$

UNIT-V

10. a) Define and analyze briefly the following terms of D / A converters:
(i) Resolution (ii) settling time (iii) conversion time

6 M CO5 L4
b) With a neat diagram explain the working principle of $R-2 R$ ladder type DAC. Derive the expression for its output voltage.

6M co5

OR

11. a) Why successive approximation ADC is faster than dual slope ADC? Explain.

6M CO5 L4
b) Explain the operation of dual slope ADC.

6 M CO5 L3 *** End ***
\square
Code: 20AC42T
II B.Tech. II Semester Supplementary Examinations December 2023

Numerical Methods and Random Variables

(Common to EEE and ECE)
Max. Marks: 70
Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two marks.
3. Answer ALL the questions in Part-A and Part-B

PART-A

(Compulsory question)

1. Answer ALL the following short answer questions $\quad(5 \times 2=10 \mathrm{M}) \quad \mathrm{CO} \quad \mathrm{BL}$
a) Explain Bisection method to find the real root of the equation $f(x)=0$.

CO1 L1
b) Consider the differential equation $\frac{d y}{d x}=f(x, y), y\left(x_{0}\right)=y_{0}$. Explain Taylor's series method for finding the approximate solution $y(x)$.

CO2 L1
c) Find the mean, median, and mode of the following data. 8, 12, 10, 11, 13, 12, 15, 9, 11, 16. CO3 L2
d) Write a short note on Continuous Probability distribution function.
e) If the probability of a defective bolt is 0.1 , find
(i) the mean (ii) the standard deviation of the Binomial distribution in a total of 400 bolts. CO5 L2

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12 \mathbf{= 6 0}$ Marks)
Marks CO BL

UNIT-I

2. a) Apply Newton-Raphson's method to find the real root of the equation $x \log _{10} x-1.2=0$ by taking suitable initial approximation.

6M CO1 L3
b) From the following table of yearly premiums for policies maturing at quinquennial ages, estimate the premiums for policies maturing at the age of 46 years.

Age (x):	45	50	55	60	65
Premium (y):	2.87	2.40	2.08	1.86	1.71
OR					

6M CO1 L4
3. a) Apply Regula falsi method to find the root of the equation $\cos x=x e^{x}$ correct to three decimal places.

6M CO1 L3
b) Interpolate the value of the function $y=f(x)$ corresponding to $x=1$ using Lagrange's interpolation formula from the following set of data:

x	0	3	4
$y=f(x)$	12	6	8

6M CO1 L4

UNIT-II

4. a) Find the first and second order derivatives of the function tabulated below at the point $\mathrm{x}=10$.

x	2	4	6	8	10
y	5.5	6.1	7.2	15.3	16

6M CO2 L4
Evaluate the integral $\int_{0}^{6} \frac{d x}{1+x^{2}}$ by taking 7 ordinates (i.e. six sub intervals) using i) Trapezoidal rule and ii) Simpson's $3 / 8^{\text {th }}$ rule.
b)

OR
5. Apply Euler's method to find the approximate value of y for $x=1$, in step of $h=0.1$, given that $\frac{d y}{d x}=\frac{y-x}{y+x}$, with $\mathrm{y}=1$ for $\mathrm{x}=0$.

UNIT-II

6. a) Calculate Mean, Median, Mode from the following grouped data:

x	0	1	2	3	4
Frequency (f)	1	5	10	6	3

b) Make use of correlation coefficient formula to find the correlation coefficient between the ages of husbands (x) and wives (y) from the following data.

x	23	25	26	28	29	30	31	33	35	36
y	18	20	22	27	21	29	27	29	28	29
OR										

6M CO3 L5

12 M CO 3

UNIT-IV
8. a) A husband and wife appear in an interview for two vacancies in the same post. The probability of husband's selection is $1 / 7$ and that of wife's selection is $1 / 5$. What is the probability that (i) both of them will be selected? (ii) Only one of them will be selected and (iii) none of them will be selected?
b) Three urns contain 6 red, 4 black; 4 red, 6 black; 5 red, 5 black balls respectively. One of the urns is selected at random and a ball is drawn from it. If the ball drawn is red find the probability that it is drawn from the first urn.

OR

9. In the following probability distribution

x	0	1	2	3	4	5	6
$\mathrm{p}(\mathrm{x})$	k	2 k	3 k	4 k	5 k	6 k	7 k

Find i) the value of ' k ' ii) $P(x<5), P(x>=5), P(0<x<4)$ iii) mean and iv) Variance of the distribution.

UNIT-V

10. a) If 10% of bolts produced by a machine are defective. Determine the probability that out of 10 bolts, chosen at random (i) one (ii) none (iii) at most 2 bolts will be defective.
b) The distribution of typing mistakes committed by a typist is given below. Fit Poisson distribution, and compare the theoretical frequencies with actual ones.

x	0	1	2	3	4	5
f	142	156	69	27	5	1

OR

11. Assuming that the average life span of computers produced by a certain company is 2040 hours with standard deviation of 60 hours. Find the expected number of computers whose life span is
(a) more than 2150 hours
(b) less than 1950 hours
(c) more than 1920 hours and less than 2160 hours from a lot size of 5000 computers.

Code: 20A444T

II B.Tech. II Semester Supplementary Examinations December 2023

Advanced Digital Design Concepts

(Electronics and Communication Engineering)

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two marks.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer ALL the following short answer questions ($5 \times 2=10 \mathrm{M}$) CO BL
a) Explain the basic structure of a CMOS logic gate and how it functions. 1 L2
b) Explain the purpose of HDL in digital circuit design. 2 L2
c) Provide an example of a conditional signal assignment statement in data flow design.
d) What is the purpose of a decoder in digital circuits
e) Give an example of a shift register and explain its role in digital circuit design

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)

UNIT-I

2. a) Compare and contrast the steady-state electrical behavior of CMOS logic and TTL logic. Discuss their power consumption,
noise immunity, and voltage range.

6M 1 L4

6M 1 L6
OR
3. a) Critically analyze the advantages and disadvantages of CMOS/TTL interfacing techniques. Discuss the challenges and potential issues when connecting CMOS and TTL logic devices.
b) Assess the advantages and disadvantages of Low Voltage CMOS logic. Discuss how it addresses power consumption and noise issues in digital circuits.

UNIT-II

4. Evaluate the impact of using HDL in the design of complex digital systems. Discuss the advantages and challenges of HDL in terms of design abstraction, simulation, synthesis, and code reuse. Provide real-world examples to support your analysis. 12M 2 L5
b) Design an Emitter-Coupled Logic (ECL) circuit for NOR gate. Provide the schematic diagram, explain its operation

6M 1 L5
6M 1 L4
$6 \mathrm{M} \quad 14$

OR

5. a) Analyze the significance of component declaration and component instantiation in HDL structural design. Discuss how these elements contribute to modularity, reusability, and hierarchical design.
b) Explain the purpose of packages and libraries in HDL. How do they facilitate code organization, reusability, and design optimization

UNIT-III

6. a) Explain the role and significance of entity declaration in behavioral design. How does it define the interface and internal structure of a digital system?
b) Analyze the purpose and functionality of the wait statement in behavioral design. How does it control the execution and synchronization of processes in a digital system?

OR

7. a) Describe the purpose and functionality of the null statement in behavioral design. Provide an example scenario where it is commonly used.
b) Analyze the components and structure of an architecture body in behavioral design. Discuss its role in defining the behavior and operation of a digital system.

UNIT-IV

8. a) Explain the purpose and operation of an ALU (Arithmetic Logic Unit) in digital circuits.
b) Analyze the design and functionality of a barrel shifter. Explain its operation and discuss its applications in digital circuits.

4M 4 L2

OR

9. Design a digital circuit for an n-bit ones counter using VHDL. Include the necessary components, describe the circuit's functionality, and provide a detailed VHDL model.

12M 4 L6

UNIT-V

10. a) Analyze the design and implementation of a synchronous counter using VHDL.
b) Design T-Flip Flop using D-Flip Flop

OR

11. Analyze the different types of counters (e.g., up counter, down counter, binary counter) and discuss their VHDL modeling considerations.

8M $5 \quad$ L4
$4 \mathrm{M} \quad \mathrm{L} 2$

12M 5 L4

