	II Ticket Number :			
		R-20		
Co	de: 20A442T II B.Tech. II Semester Supplementary Examinations December 2	023	I	
	Communication Systems	020		
	(Electronics and Communication Engineering)			
Mc	IX. Marks: 70 Tim	e: 3 Ho	ours	
Not	e: 1. Question Paper consists of two parts (Part-A and Part-B)			
1101	2. In Part-A, each question carries Two marks.			
	3. Answer ALL the questions in Part-A and Part-B			
	PART-A			
1 .	(Compulsory question)	C	· · ·	51
	nswer ALL the following short answer questions (5 X 2 = 10M) /hat is the need for modulation?	-		3L _2
,			02 L	
•	efine frequency modulation.			_4
,	ompare PWM and PPM.			2
,	hat is the main idea of Companding?	-	04 L 05 L	
e) D	ifferentiate various Passband data transmission.	0.	55 L	
	$\frac{PART-B}{PART-B}$ Answer <i>five</i> questions by choosing one question from each unit (5 x 12 = 60 M	arks)		
	$\frac{1}{100} = \frac{1}{100} = \frac{1}$	Marks	со	BL
	UNIT–I			
2. a)	Explain the generation of AM signals using square law			
	modulator with suitable diagram and expressions.	6M	CO1	L2
b)	Evaluate the percentage of power saving in SSB-SC with			
	respect to AM.	6M	CO1	L3
	OR			
3. a)	Compare AM, DSB-SC and SSB-SC.	6M	CO1	L2
b)	Sketch the circuit diagram of ring modulator and explain how			
	DSB-SC waveform is generated.	6M	CO1	L3
	UNIT-II			
4. a)	Draw the spectral representation of FM wave and derive the	014		
	expression for total transmission bandwidth.	6IVI	CO2	L3
D)	Explain the direct method of generation of FM signal using	CN4		
	relevant diagrams.	OIVI	CO2	L2
~ `	OR Osnatmust a Fastan Osalau disaringinatan ta dama dulata a FM			
5. a)	Construct a Foster-Seeley discriminator to demodulate a FM	614	000	
	signal and explain		CO2	Lb

b) A 107.6MHz carrier signal is frequency modulated by a 7KHz sine wave. The resultant FM signal has a frequency deviation of 50KHz. Determine the modulation index, the highest and the lowest frequencies attained by the modulated signal. 6M CO2 L5 UNIT–III 6. a) Explain the generation of PAM signals. 6M CO3 L2 b) Demonstrate the demodulation of PWM signal. 6M CO3 L2 OR 7. a) Illustrate how PPM signal can be generated from PWM 6M CO3 L6 signal. b) Compare the merits and demerits of PAM, PWM and PPM signals with applications. 6M CO3 L2 UNIT-IV 8. a) Illustrate the working of delta modulation system with a neat block diagram. 6M CO4 L2 b) Drive an expression for output signal power to Quantization noise in a PCM system. 6M CO4 L3 OR 9. a) Explain the block diagram of digital communication system. 6M CO4 L2 The bandwidth of a video signal is 4.5 MHz. This signal is to b) be transmitted using PCM with the number of quantization levels Q = 1024. The sampling rate should be 20% higher than the Nyquist rate. Calculate the system bit rate. 6M CO4 L5 UNIT-V 10. a) Explain with neat block diagram the generation and recovery of DPSK signals. 6M CO5 L2 b) The bit stream d(t) is to be transmitted using DPSK. If d(t) is 001010011010. Determine b(t) and draw the waveforms. 6M CO5 L6 OR 11. a) Draw and explain the operation of transmitter and receiver of a coherent FSK. 6M CO5 L2 b) Illustrate the BPSK system and discuss its bandwidth requirement. 6M CO5 L3 *** End ***

На	Il Ticket Number :	
Co	de: 20A443T	R-20
	II B.Tech. II Semester Supplementary Examinations Decemb	oer 2023
	Electromagnetic Theory	
	(Electronics and Communication Engineering)	Time on O Line we
Ma	x. Marks: 70 ********	Time: 3 Hours
Not	 e: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two marks. 3. Answer ALL the questions in Part-A and Part-B 	
	<u>PART-A</u> (Compulsory question)	
1 A	nswer ALL the following short answer questions $(5 \times 2 = 10M)$	CO BL
	ist out the properties of the gradient of a scalar field.	CO1 L4
,	Define Coulomb's law of force.	CO2 L1
,	Discuss Polarization in dielectrics.	CO3 L2
	lustrate Maxwell's equations for static EM fields.	CO3 L2 CO4 L3
	Determine the characteristic impedance of a transmission L	
,	npedance and admittance of 16 and 9 respectively.	CO5 L3
	PART-B	
A	nswer <i>five</i> questions by choosing one question from each unit (5 x 12	2 = 60 Marks)
		Marks CO BL
0)	UNIT-I	
2. a)	Express $\mathbf{A} = \rho \mathbf{z} \sin \emptyset \mathbf{a}_{\rho} + 3\rho \cos \emptyset \mathbf{a}_{\emptyset} + \rho \cos \emptyset \sin \emptyset \mathbf{a}_{\mathbf{z}}$	
	spherical co-ordinates.	6M CO1 L1
b)	Calculate differential length, differential surface, a differential volume for all three coordinate systems.	nd 6M CO1 L3
	OR	
3. a)	Express the following points P(1,60°,2), Q (4, $/2$, $/6$)	in
0. uj	cartesian co-ordinates.	6M CO1 L1
b)	Find the gradient of the given scalars.	
,	i) $V = 4xz^2 3yz$. ii) $W = 2\rho(z^2 + 1)\cos\emptyset$.	6M 004 10
		6M CO1 L3
4 a)	State Gauss's law. Derive the expression for Electric Fie	۶IH
n aj	intensity due to an infinite sheet of charge using Gauss	
	law.	6M CO2 L2
b)	A Charge of -0.3 µC is located at A(25, -30, 15) (in cm) a	
,	a second charge of 0.5 µC is at B(-10, 8, 12) cm. Fi	
	Electric field intensity at (i) the origin (ii) P(15, 20, 50) cm.	6M CO2 L3

Code: 20A443T

0	R
---	---

5.	a)	Point charges 5 nC and -2 nC are located at $(2, 0, 4)$ and $(-3, 0, 5)$, respectively. Determine the force on a 1 nC point charge located at $(1, -3, 7)$.	6M	CO2	L3
	b)	Derive the relationship between electric field intensity and			
	,	electric potential.	6M	CO2	L6
		UNIT–III			
6.	a)	Moist soil has a conductivity of 10^{-3} siemens/m and $r = 2.5$.			
		Evaluate J_c and J_d where E = 6 X 10 ⁻⁶ sin (9 X 10 ⁹ t) V/m.	6M	CO3	L5
	b)	Derive Poisson's and Laplace's equations starting from			
		Gauss's law?	6M	CO3	L6
		OR			
7.	a)	In free space, $V=x^2y(z+3)$ V. Find E at (3, 4, -6).	6M	CO3	L3
	b)	A spherical capacitor with $a = 1.5$ cm, $b = 4$ cm has an			
		inhomogeneous dielectric of = 10 o. Calculate the			
		capacitance of the capacitor.	6M	CO3	L3
		UNIT–IV			
8.	a)	Write about Ampere's circuit law and calculate current			
		density at $(2, -1, 3)$ due to magnetic field intensity of	<u></u>		
		$\mathbf{H} = \mathbf{x}\mathbf{y}^{2}\mathbf{a}_{\mathbf{x}} + \mathbf{x}^{2}\mathbf{z}\mathbf{a}_{\mathbf{y}} - \mathbf{y}^{2}\mathbf{z} \mathbf{a}_{\mathbf{z}} \mathbf{A}/\mathbf{m}.$	OIVI	CO4	L2
	b)	Derive an expression for magnetic field strength H due to a			
		current carrying conductor of finite length using Biot - Savart's law.	6M	CO4	16
		OR	OIVI	004	LO
9.	a)	Given the magnetic vector potential $\mathbf{A} = -\frac{2}{4} \mathbf{a}_z$ wb/m.			
0.	ω,	Calculate the total magnetic flux passing the surface if			
		= /2, 1 2 m, 0 z 5 m.	6M	CO4	L3
	b)	Derive the expression for the energy stored in magnetostatic			
	,	fields.	6M	CO4	L6
		UNIT–V			
10.	a)	Develop the voltage and current equations for transmission			
		lines.	6M	CO5	L6
	b)	Describe the configuration and applications of smith chart. OR	6M	CO5	L2
11.	a)	State and prove the Poynting theorem.	6M	CO5	L1
	b)	A uniform plane wave at a frequency of 1 GHz is travelling			
		in a large block of Teflon ($_r = 2.1$, $\mu_r = 1$ and $=0$).			
		Determine , , and .	6M	CO5	L3
		*** End ***			

Car		R-20)	
Coc	■ II B.Tech. II Semester Supplementary Examinations Decemb	er 2023		
	Linear IC Applications			
	(Electronics and Communication Engineering)			
Max	<. Marks: 70 ************************************	Time: 3	Hours	
Note	 2: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two marks. 3. Answer ALL the questions in Part-A and Part-B 			
	PART-A			
A	(Compulsory question)		00	
	swer ALL the following short answer questions $(5 \times 2 = 1)$			BL
,	ention the characteristics of an ideal op-amp.			L2
,	hat are the applications of V-I and I-V converters?			L3
	hat are the applications of integrator and differentiator?			L3
	efine capture range and lock range in PLL.			L1
e) W	hat are the different techniques for DAC?	(CO5	L4
۸	<u>PART-B</u>	60 Mai	uko)	
Ar	nswer <i>five</i> questions by choosing one question from each unit (5 x 12	= ou war Marks	CO	В
	UNIT-I	Marko	00	
. a)	Write short notes on classification of IC.	6M	CO1	L
b)	Draw the schematic block diagram of the basic Op-amp.			
,	Explain the significance of virtual ground in basic inverting			
	op-amp. How would you explain its existence?	6M	CO1	L
	OR			
-	Analyze various DC and AC characteristics of an op-amp.	12M	CO1	L
. a)	Explain the three basic op-amp configurations.	6M	CO2	L
b)	Draw the circuit diagram of an op-amp differentiator and			
Ĩ	derive an expression for the output in terms of the input.		CO2	L
	OR			
. a)	Draw the circuit diagram of instrumentation amplifier using 741 op - amp and explain its operation.	6M	CO2	L
b)	An op-amp is being used as voltage-to-current converter. The value of resistance used in the circuit R is 6.8 k $, R_{L}$			
	= 2 k , V_1 = 5 V, V_2 = 0 V. Determine the values of I _L , V_L			
	and V_0 . Draw the circuit.		CO2	I

		UNIT–III	de: 20A	\441 T	
6	2)	Draw the circuit diagram of astable multivibrator using op-			
0.	a)	amp and explain its operation with relevant sketches.	6M	CO3	L4
	b)	Draw the circuit of saw tooth wave generator and explain			
		its working.	6M	CO3	L2
		OR			
7.	a)	With the help of neat circuit diagram explain the working of a logarithmic amplifier,	6M	CO3	L3
	b)	What is precision rectifier? Explain the principle of			
		operation of a precision half wave rectifier with waveforms.	6M	CO3	L4
		UNIT–IV			
8.	a)	Draw the functional diagram of 555 timer and discuss its			
		operation.	6M	CO4	L2
	b)	Explain the operation of an astable multivibrator using 555			
		timer. Derive the expression for on and off state time			
		periods.	OIVI	CO4	L5
•	、	OR E li di col indiana i lo ses			
9.		Explain the operation of a Schmitt trigger using IC 555.	6M	CO4	L2
	b)	Draw the block diagram of generation of FSK using a PLL.			
		Explain its function.	6IVI	CO4	L5
10	c)	UNIT-V Define and analyze briefly the following terms of D/A			
10.	a)	Define and analyze briefly the following terms of D/A converters:			
		(i) Resolution (ii) settling time (iii) conversion time	6M	CO5	L4
	b)	With a neat diagram explain the working principle of R-2R			
		ladder type DAC. Derive the expression for its output			
		voltage.	6M	CO5	L5
		OR			
11.	a)	Why successive approximation ADC is faster than dual	o		
		slope ADC? Explain.		CO5	
	b)	Explain the operation of dual slope ADC.	6M	CO5	L3
		*** End ***			

На	Il Ticket Number :											
Co	de: 20AC42T	<u> </u>					II			R-20		
	II B.Tech. II Ser	nester Su	pplen	nentc	ary Exa	minc	atior	ns De	ecem	ber 2023		
	Nume	rical M	etho	ds ai	nd Ra	ndc) m	Var	iable	es		
		(0	Commo	on to I	EEE and	d ECE	=)			T 0.11		
Ma	x. Marks: 70			****	****					Time: 3 H	ours	
Not	e: 1. Question Pape 2. In Part-A, each 3. Answer ALL	h question	carries	Two	narks.		Part-]	B)				
		•		PAR'								
			(Com	pulsor	y questi	on)						
1. Answe	r ALL the following	g short an	swer q	uestio	ns (5 X 2	2 = 10) (M			CO	BL
a) Explai	n Bisection method	to find the	real roo	ot of the	e equation	on f(x)=0.				CO1	L1
b) Consid	der the differential e	equation $\frac{dy}{dx}$	$\frac{v}{x} = f(x,$	y),y($x_0) = y_0$. Ехр	lain ⁻	Taylo	r's ser	ies method		
for find	ding the approximate	e solution y	/(X).								CO2	L1
	ne mean, median, ai			-				, 13,	12, 15	5, 9, 11, 16.	CO3	L2
,	a short note on Cont		•		oution fu	nctior	า.				CO4	L1
, .	probability of a defect				nial diat	ributio	n in i	o toto	J of 40	0 halta	0.05	10
(1) the	mean (ii) the standa	ind deviation		PAR		ibulic		a 1012	u 01 40	o dons.	CO5	L2
А	nswer <i>five</i> questio	ns bv cho	osina a			rom	each	unit	(5 x 1	2 = 60 Mark	s)	
			eenig e						(•	Marks	-	BL
				UNIT	I							
2. a)	Apply Newton-Rap	ohson's m	ethod t	to find	the re	eal ro	oot o	f the	equa	ation		
	$x \log_{10} x - 1.2 = 0$ by	y taking su	iitable ir	nitial ap	proxima	ation.				6M	CO1	L3
b)	From the followin quinquennial ages, 46 years.	-	-						-			
	A	ge (x):	45	50	55	60	65					
	Pre	mium (y):	2.87	2.40	2.08 1	1.86	1.71			6M	CO1	L4
				OF	र							
3. a)	Apply Regula falsi	method to	find the	e root c	of the eq	uatio	n cos	x = x	ce ^x col	rrect		
	to three decimal pla										CO1	L3
b)	Interpolate the va Lagrange's interpol			-	. ,			-	x=1 u	sing		
				0 3		301 01	uata					
		V		12 6						6M	CO1	L4
				UNIT	-11							
4. a)	Find the first and s the point $x=10$.	econd ord	er deriva	atives	of the fu	unctio	n tab	ulate	d belo	w at		
		x 2	4	6	8	10						
		y 5.5	6.1	7.2	15.3	16				6M	CO2	L4
	Evaluate the integ	ral $\int_{0}^{6} \frac{dx}{1+x^2}$	by tak	king 7	ordinate	es (i.e	e. six	c sub	interv			
	using i) Trapezoida											
										6M	CO2	L4

Code: 20AC42T

5.	Apply Euler's method to find the approximate value of y for $x = 1$, in step of			
	<i>h=0.1</i> , given that $\frac{dy}{dx} = \frac{y-x}{y+x}$, with y=1 for x=0.	12M (CO2 I	L4
	UNIT–III			
6. a)				
01 0.	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
	Frequency (f) 1 5 10 6 3	6M (CO3 I	L5
b,			505 1	LJ
b)	between the ages of husbands (x) and wives (y) from the following data.			
		6M (CO3 I	L5
	y 18 20 22 27 21 29 27 29 28 29 OR		505 1	LJ
7				
7.	Compute the rank correlation coefficient for the following data of the marks obtained by 8 students in the Physics (x) and Mathematics (y).			
	Marks in Physics (x) 15 20 28 12 40 60 20 80			
	Marks in Mathematics (y) 40 30 50 30 20 10 30 60	12M (CO3 I	L5
			500 1	LU
	UNIT-IV			
8. a)				
0. a	post. The probability of husband's selection is 1/7 and that of wife's selection			
	is 1/5. What is the probability that (i) both of them will be selected? (ii) Only			
	one of them will be selected and (iii) none of them will be selected?	6M (CO4 l	L3
b)	Three urns contain 6 red, 4 black; 4 red, 6 black; 5 red, 5 black balls			
	respectively. One of the urns is selected at random and a ball is drawn from			
	it. If the ball drawn is red find the probability that it is drawn from the first urn.	6M (CO4 I	L3
	OR			
9.	In the following probability distribution			
	x 0 1 2 3 4 5 6			
	p(x) k 2k 3k 4k 5k 6k 7k			
	Find i) the value of 'k' ii) $P(x<5)$, $P(x=5)$, $P(0 iii) mean and iv)$			
	Variance of the distribution.	12M (CO4 I	L3
	UNIT–V			
10. a)				
	probability that out of 10 bolts, chosen at random (i) one (ii) none (iii) at most 2 bolts will be defective.	6M (CO5 I	L6
b,			505 1	LU
b)	The distribution of typing mistakes committed by a typist is given below. Fit Poisson distribution, and compare the theoretical frequencies with actual			
	ones.			
	x 0 1 2 3 4 5			
	f 142 156 69 27 5 1	6M (CO5	L6
	OR			
11.	Assuming that the average life span of computers produced by a certain			
	company is 2040 hours with standard deviation of 60 hours. Find the			
	expected number of computers whose life span is			
	(a) more than 2150 hours			
	(b) less than 1950 hours			
	(c) more than 1920 hours and less than 2160 hours from a lot size of			
	5000 computers.	12M (CO5	L6
	*** End ***			

*** End ***

	Hall Ticket Number :												
	ode: 20A444T	<u> </u>								F	R-20		
	II B.Tech. II Sem	ester Su	ppleme	entc	iry Exc	amina	tions	s Deo	cem	iber 2	023		
		dvanc	-		-			-	,				
М	(Ele ax. Marks: 70	ctronics		9MM		tion En	igine	ering	3)	Time	e: 3 Hou	Jrs	
No	ote: 1. Question Paper	consists c				and P	art-B	8)					
	 In Part-A, each Answer ALL th 	^											
	5. Answer ALL u	le questio		PAR'		11 t-D							
			(Comp			ion)							
1. Ansv	ver ALL the follov	ving sho	ort ans	wer	ques	tions	(5	X 2	= 10	0M)		СО	BL
a) Exp	lain the basic struc	ture of a	a CMOS	S log	gic ga	te and	d hov	v it f	unct	ions.		1	L2
b) Exp	lain the purpose of	HDL in	digital	circu	uit des	sign.						2	L2
,	vide an example of	a condi	tional s	igna	l assi	gnme	nt sta	atem	nent	in dat	a flow		
des	•			,		.,						3	
	at is the purpose of			-				11.14				4	
e) Give	e an example of a s	snift regi			•	its roi	e in	aigit	ai ci	rcuit c	lesign	5	L3
	Answer <i>five</i> question	s by choc		PAR e qu		from e	ach i	unit (5 x 1	2 = 60	Marks)	
			_								Marks	СО	BL
				UNI									
2. a)	Compare and co			-									
	CMOS logic and noise immunity, a	_				r pow	er c	onsi	lmb	tion,	6M	1	1.4
b)	Design an Emitte		•	•		circu	it fo	r NIC)R c	ato	OIVI	1	L4
D)	Provide the sche	-	-	-						jaie.	6M	1	L6
			agran,	OF							0	•	LU
3. a)	Critically analyz	e the	advan	_		nd di	sadv	/anta	ades	s of			
,	CMOS/TTL interf			-					-				
	potential issues	when	conne	ectin	g CN	IOS	and	TT	LI	ogic			
	devices.										6M	1	L4
b)	Assess the adva	•				•				•			
	CMOS logic. Disc			ress	ses po	owerd	cons	ump	tion	and	6M		
	noise issues in d	igital circ		JNIT							OIVI	1	L5
4.	Evaluate the imp	hact of	L			ah ar	sian	of	com	nlev			
- T .	digital systems. D		•				•			•			
	in terms of desig				•			•					
	reuse. Provide re	al-world	l exam	ples	to su	ipport	you	r an	alys	is.	12M	2	L5

		OR		
5.	a)	Analyze the significance of component declaration and		
		component instantiation in HDL structural design. Discuss how		
		these elements contribute to modularity, reusability, and		
		hierarchical design.	6M	2 L4
	b)	Explain the purpose of packages and libraries in HDL. How do		
		they facilitate code organization, reusability, and design		
		optimization	6M	2 L2
		UNIT–III		
6.	a)			
		behavioral design. How does it define the interface and internal		
		structure of a digital system?	6M	3 L2
	b)	Analyze the purpose and functionality of the wait statement in		
		behavioral design. How does it control the execution and		
		synchronization of processes in a digital system?	6M	3 L4
		OR		
7.	a)			
		behavioral design. Provide an example scenario where it is		
		commonly used.	4M	3 L3
	b)			
		in behavioral design. Discuss its role in defining the behavior		
		and operation of a digital system.	8M	3 L4
0	-)	UNIT-IV		
8.	a)	Explain the purpose and operation of an ALU (Arithmetic Logic	454	
		Unit) in digital circuits.	4M	4 L2
	b)	Analyze the design and functionality of a barrel shifter. Explain		
		its operation and discuss its applications in digital circuits.	8M	4 L4
0		OR Design a digital singuit for on a bit and a soundar using V/UDI		
9.		Design a digital circuit for an n-bit ones counter using VHDL.		
		Include the necessary components, describe the circuit's	12M	4 10
		functionality, and provide a detailed VHDL model.		4 L6
10	2)	Analyze the design and implementation of a synchronous		
10.	aj	counter using VHDL.	8M	5 L4
	b)	Design T-Flip Flop using D-Flip Flop	4M	5 L2
	0)	OR	-111	5 LZ
11.		Analyze the different types of counters (e.g., up counter, down		
		counter, binary counter) and discuss their VHDL modeling		
		considerations.	12M	5 L4
		*** End ***		~ = '