	R	-20	
Code: 20A441T			
II B.Tech. II Semester Supplementary Examinations Dec 2022 Linear IC Applications	2 / JUIT	2025	
(Electronics and Communication Engineering)			
Max. Marks: 70 ********	Time	: 3 Hc	ours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)			
 In Part-A, each question carries Two mark. Answer ALL the questions in Part-A and Part-B 			
PART-A			
(Compulsory question)			
1. Answer ALL the following short answer questions $(5 \times 2 = 10 \text{ M})$) C	()	Blooms Level
) List the AC characteristics of op-amp.	С	O1	L1
) Draw the op-amp integrator circuit.	С	02	L6
) Give some limitations of op-amp as a comparator.	С	O3	L3
) Describe the key components of PLL.	С	CO4	
) List the applications of ADC?	С	CO5	
PART-B			
Answer <i>five</i> questions by choosing one question from each unit (5 x 12	= 60 Ma	rks)	
	Marks	со	Blooms
	Marks	00	Level
UNIT-I . a) Discuss the various AC and DC characteristics of an			
. a) Discuss the various AC and DC characteristics of an op-amp?	6M	CO1	L2
b) Explain what is an integrator circuit? Discuss the	0.11	001	LZ
relative advantages and disadvantages if IC'S over			
discrete assembly.	6M	CO1	L2
OR			
. a) Draw the block schematic of an op-amp and explain			
the functions of each block.	6M	CO1	L6
b) Compare and contrast ideal and practical op-amp?	6M	CO1	L2
UNIT–II			
. a) Explain the working of non-Inverting amplifier with a		000	L2
. a) Explain the working of non-Inverting amplifier with a neat diagram.	6M	CO2	LZ
		CO2	LZ

OR

5. a) Discuss how op-amp is used as a differentiator? 6M CO2 L2

	b)	Describe how an op-amp can be used as integrator? Also derive expression for the output.	6M	CO2	L3
6.	a)	Explain the working of a Schmitt trigger with neat circuit diagram.	6M	CO3	L2
	b)	Write short notes on: Log and Antilog amplifier	6M	CO3	L6
		OR			
7.	a)	Compare and contrast saw tooth and triangular wave generator.	6M	CO3	L2
	b)	With neat diagram explain how op-amp can be used for comparator.	6M	CO3	L3
		UNIT–IV			
8.	a)	Write notes on applications of PLL.	6M	CO4	L6
	b)	Draw the functional block diagram of 565IC and explain its working.	6M	CO4	L3
		OR			
9.	a)	Discuss FSK modulation with necessary block diagram.	6M	CO4	L2
	b)	Deliberate the working of an Astable multivibrator using IC555 with circuit diagram	6M	CO4	L3
		UNIT–V			
10.	a)	Write notes on A/D converters.	6M	CO5	L6
	b)	Describe the working of R-2R ladder DAC with neat circuit diagram and write its limitations.	6M	CO5	L2
		OR			
11.	a)	Explain the working of dual slope ADC with neat circuit diagram.	6M	CO5	L2
	b)	Sketch and explain the transfer characteristic of a DAC with necessary equations.	6M	CO5	L3
		*** End ***			

*** End ***

		Hall Ticket Number :								
		ode: 20AC42T	R-2	20						
		II B.Tech. II Semester Supplementary Examinations Dec 2022 /	Jan 20)23						
		Numerical Methods and Random Variables								
		(Common to EEE & ECE)								
	Μ	ax. Marks: 70	Time: 3	3 Hou	irs					
	 Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two mark. 3. Answer ALL the questions in Part-A and Part-B 									
		<u>PART-A</u> (Compulsory question)								
1	Δ	Inswer ALL the following short answer questions $(5 \times 2 = 10M)$		со	Blooms					
					Level					
a)	Find	the missing term in the following data:		C01	L1					
		<u>45.0</u> 49.2 54.1 67.4								
b)	.			C02	L1					
,		$en_{\frac{dy}{dx}} = \frac{1}{x + y} \text{ with}^{i} \text{ initial condition } \frac{54}{y = 1} \text{ at } \frac{0}{x = 0}; \text{ find } \frac{4}{y \text{ for } x = 0}.1 \text{ by E}$	uler's							
		h0(d. Use $h = 0.05$.		• • • •						
		e the empirical relation between mean, median and mode.		C03	L2					
,	•	air of dice is tossed twice. Find the probability of scoring 7 points twice.		C04 C05	L1 L3					
e)	Dele	ermine the probability of getting 9 exactly twice in 3 throws with a pair of fair di	ice.	005	LJ					
PART-B Answer <i>five</i> questions by choosing one question from each unit (5 x 12 = 60 Marks)										
		$\frac{1}{1} = 0$	Marks	CO	Blooms					
		UNIT–I			Level					
2.	a)	By the bisection metho								
		$\sin \frac{\text{using1}}{x = \frac{1}{x}}$, that lies between $\frac{d}{x = \frac{1}{x}}$ and $\frac{\text{pprox}}{x = \frac{1}{x}}$.5 (measured in radians).								
		Carry out the computations up to 5th stage.	6M	CO1	L1					
	b)	Determine the cubic polynomial which takes the following values:								
		$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
		Hence calculate ^{7 (4)} .	6M	CO1	L3					
2										
3.	a)	Find a real root of the equation $O_{\mathbf{R}}$ by regula-falsi method correct to four decimal places.	6M	CO1	L1					
	b)	Use Lagrange's interpolation number Determine the value of the len rect	0111	001	LI					
	,	10, if the following values of $\int_{x}^{1} \int_{y}^{1} dx = \int_{x}^{1} \frac{dx}{dx} = \int_{x}^{y} \frac{dx}{dx} = \int_{x}^{y$								
		<u>xes</u> <u>y</u> 12 13 14 16	6M	CO1	L3					
		UNIT–II								
4.	a)	Solve $\int_{0}^{-\epsilon} \frac{dx}{1+x^2}$ by $u_{sing Trap}^{\epsilon}$ ezoidal rule.								
	,	Solve $\int_0^{5} \frac{1}{1+x^2}$ by $u_{sing Trap}$ excluditule.	6M	CO2	L3					

Page **2** of **2**

Code: 20AC42T

											oue. 20	JAC421	
	b)	Solve $\frac{dy}{dx} = 1$ series method	og(_{xy} od.) for y(l) a	and $y(1)$	2), giv	/en ᢧᢗ	= 2,	by using Taylor's	6M	CO2	L3
						0	R						-
5.	a)	Use Simpsor	n'e 1/3	rule to	find	-c 0	F.	inc		ordinates	CN 4		
	,	L. e Si	's 1/3	rune to			dx by	tak ⁿ e			01/1	CO2	L1
	b)	Us e Simpson's 1/3 ruler's method, determine ng s?) and nate?) gives using modified Eu y' = y + ex, y(0)=0.										CO2	L3
		UNIT–III											
6.		Determine i distribution:	mean,	media	an a	nd sta	indard	devia	ation f	or the following			
		Mid Value	15	20	25	30	35	40	45	50 55			
		Frequency	2	22	19	14	3	4	6	1 1	12M	CO3	L3
						0	R						
7. Determine the correlation coefficient for the following data:													
				atior	1	2	3	4	5				
				x: y:	2	5	3	8	7		12M	CO3	L3
UNIT–IV													
8.										ner box II contains			
	six tickets numbered 2, 4, 6, 7, 8, and 9. If one of the two boxes is chosen at random and a ticket is drawn at random from the chosen box, find the												
) 3 (iii) 1 or 9.	12M	CO4	L2
		probabilities	unat un		uiaw	0 0	_	u (i) z	01 + (11) 5 (11) 1 61 5.		004	LZ
9.		Suppose a c	ontinu		aw								
9.		Suppose a c	onunu	ous R.	V h	$as_{1}e_{2}$ $as_{2}e_{2}$ 1 - x	probab	ility de	ensity				
				f(x) =	$= \begin{cases} k \end{cases}$	[1 - x]) for	0 < 2	x < 1				
		(a) Find k (k	a) Fin		(0 v < 03	els	ewhe	re	Using distribution			
										n 0.3 (e) between			
										probability density			
		function.									12M	CO4	L2
						UNI	T–V						
10.	a)	•	•	•			•			vill be defective is			
			•			•	ermine	e the p	orobabil	lity that (a) exactly	CN 4		
		two (b) at lea					•		,		61/1	CO5	L3
	b)		•	•	•					ms in a sample of	сM	CO5	1.0
		100 items if 2	2 /0 01		laue	0 0	•	aleue	SIECLIVE	·.	ON	005	L3
4.4			oword	o diatin	otion	-		aand	alaaa t	hird aloog or poop			
11.		•								hird class or pass or more; between			
			•			•				arks respectively.			
										he percentage of			
		•	tting	second	l clas	ss. As	sume	that	marks	X are normally			
		distributed.									12M	CO5	L3
							ماد ماد <u>م</u>	I als als (

*** End ***

	На	III Ticket Number :														
	Co	de: 20A444T												R -	20	
		ll B.Tech. II Sem			• •									/ Jan 20	023	
			Adv ectro			-			-			-				
	Мс	x. Marks: 70	ecin	Unic	s un	uc	JIII	10110	cunc		Igin	Ceni	9)	Time:	3 Hou	Jrs
	NLad	a. 1 Overstian Dana			of t			*****		n d T	ant	D)				
	INOL	te: 1. Question Pape 2. In Part-A, each								ina P	art-	В)				
		3. Answer ALL	-							t-B						
						N		RT-A		`						
	4					-		• -	iestic	-	< <u>-</u>				_ BI	ooms
		Answer ALL the fo		-				-			`		= 10M)		L	evel
	-	How many NAN	-		s are	e use	ed II	na(SMC)S Ir	nvei	ter?		CC		L1
		What is a Data of	-			_								CC		L1
	,	In short differen					ata	low	& B	eha	VIOL	ir Mo	odel.	CC		L2
		What is a Barrel			-									CC		L1
	e)	Write the differe	nce	s be	etwe	en l	atch	ies a	and	flipfl	ops	-		CC)5	L2
		Angwan fina anasti	ong h	w ob	oogir	1 <i>a</i> 0 n		RT-B		m	oh m	n i t ()	5 - 12	- 60 Man	ra)	
		Answer <i>five</i> questi	ons d	y ch	oosn	ig on	le qu	estio	II II O	in ea	ch u	mi (:	5 X 12 :	Marks	CO	Blooms
						18117								Marks	00	Level
S	c)	Roolizo o CMC	۲ د ب	rop				it fo	r 0	inni	14 NI		aoto			
Ζ.	a)	Realize a CMC and explain its				ЛС	iicu		1 2-	mpu	IL IN	UK	yale	6M	CO1	L3
	h)	Explain about (fan	nilia	c							CO1	
	0)				ogic			5.						OW	COT	L1
З	a)	Explain about (<u>אר</u>		lyns	_		otri	ral k	oha	vio	ıır		6M	CO1	1.4
5.	b)	Discuss about			•							ur.			CO1	L1
	0)	Discuss about		55/		INIT		Jing T	•					OIVI	COT	L2
Л	a)	Draw and expla	ain a	hou					n flo	\\/				6M	CO2	10
4.	a) b)	Briefly discuss						Ŭ			nte					
	D)	Diferry discuss	avu	ut C	uuu			Joiy		SILLE	1113	•		OIVI	CO2	L1
F		Evoloia in da	toil	~h	0.1. 1	_		000	nt ·		0.00	lion	0 0 0 d			
5.		Explain in de Component Ins					тр	une	IIL (Jeci	ara		and	12M	CO2	L1

			Code: 2	0A444T							
		UNIT–III									
6.	a)	Distinguish variable and Signal assignment statements in									
		VHDL.	6M	CO3	L2						
	b)	Explain about the variable assignment statement in VHDL.	6M	CO3	L1						
		OR									
7.		Explain in detail about the Delay models.	12M	CO3	L1						
	UNIT-IV										
8.	a)	Design any Demultiplexer using VHDL.	6M	CO4	L4						
	b)	Design binary to gray code converter using VHDL	6M	CO4	L4						
		OR									
9.	a)	Design any one code converter of your choice using									
		VHDL	6M	CO4	L4						
	b)	Design a full adder using VHDL.	6M	CO4	L4						
		UNIT-V									
10.	a)	What is a shift register? Design any Shift register using									
		VHDL.	6M	CO5	L3						
	b)	Design D-Flip Flop using VHDL	6M	CO5	L4						
		OR									
11.	a)	Design JK-Flip Flop using VHDL	6M	CO5	L4						
	b)	Explain in brief about Impediments to synchronous									
		design.	6M	CO5	L1						
		*** End ***									

F	all Ticket Number :]			
										<u>]</u>		R-	20	
C	ode: 20A442T II B.Tech. II Sem	ester Su	elaqu	eme	entry	/ Exc	amir	atic	ons [Dec	2022	/ Jan 2	023	
II B.Tech. II Semester Supplementry Examinations Dec 2022 / Jan 2023 Communication Systems														
N	(E Nax. Marks: 70	lectronic	cs ar	nd C	omr	nuni	cati	on E	ngin	ieeri	ng)	Time	3 Ηοι	irs
						****						nino.	01100	//5
N	ote: 1. Question Pape 2. In Part-A, eac	h questio	n car	ries '	Гwo	mar	k.		Part-	B)				
	3. Answer ALL	the quest	ions :	in P a		A and RT-A		т-в						
			(0	Comp		ry qı		on)						
1. /	Answer ALL the follo	owing sh	ort a	nswe	ər qu	estic	ons	(5 X 2	2 = 1	0M)		со	Blooms Level
a) W	/hat are the disad	vantage	s of	dou	ıble	side	ba	nd f	ull c	arrie	er sys	tem?	CO1	Level L1
-	tate Carson rule	U									,		CO2	L1
c) C	ompare different	oulse m	odul	atio	n sc	hen	nes.						CO3	L3
-	/rite the quantizat				-						-	/stem	CO4	L1
e) P	lot the BPSK sign	al for the	e giv	/en	seq	ueno	ce 0	010	110	010	•		CO5	L1
PART-B Answer <i>five</i> questions by choosing one question from each unit (5 x 12 = 60 Marks)														
	Answei jive quest	ions by ch	100511	ig on	ie qu	CSUU.		III Ca	CII U	IIII (3 X 12	Marks		Blooms
					•							Marks	00	Level
$2 $ α	With the help	of blook		NIT-		aval	oin	tha		mor	oto of	:		
z. a)	With the help communication			ayra	iii e	expi	alli	uie	eie	mer	115 01		CO1	L2
b)	Define under-r	•		and		/er-r	mod	ulat	ion	F۵	nlain		001	LZ
0)	why over modu						1100	aiai		_ /	(pium		CO1	L2
	ý			OR										
3. a)	Draw the block	diagra	m fo	or a	ene	ratio	on o	f DS	SB-	SC	wave)		
,	using two A	•		•										
	demodulated u	sing col	here	ent c	lete	ctor	. Ev	alua	ate 1	the	effect			
	of frequency er	ror in lo	cal	carr	ier f	requ	lend	су о	f de	tect	or.	6M	CO1	L4
b)	Write a short no	otes on	COS	STA	SL	oop	•					6M	CO1	L1
			U	NIT-	-11									
4. a)	Explain FM Thr	reshold	effe	ct								6M	CO2	L2
b)	Explicate Arms	trong m	etho	o bc	f ge	ener	atio	n of	FΜ	sig	nal.	6M	CO2	L2
				OR	2									
5. a)	Explain the ger	neration	of N	Varr	ow l	ban	d Fr	equ	enc	y				
	Modulation with	n suitab	le bl	ock	dia	grar	n.					6M	CO2	L2
b)	Compare AM a	nd FM										6M	CO2	L3

	UNIT–III			
6. a)	Describe the generation and demodulation of PAM	6M	CO3	L3
b)	With the aid of the block diagram, briefly explain Frequency division multiplexing.	6M	CO3	L3
	OR			
7. a)	Explain the generation of PPM.	6M	CO3	L2
b)	Demonstrate the generation of PWM with a neat circuit diagram	6M	CO3	L4
	UNIT–IV			
8. a)	With neat block diagram, explain the PCM communication system	6M	CO4	L3
b)	Give the comparison of DPCM and DM with standard PCM.	6M	CO4	L3
	OR			
9. a)	Explain delta modulation in detail with a suitable diagram	6M	CO4	L2
b)	A television signal with a bandwidth of 4.2 MHz is transmitted using binary PCM. The number of quantization levels is 512. Calculate the transmission			
	bandwidth and output SNR.	6M	CO4	L3
	UNIT–V			
10.	Explain coherent generation and detection of BFSK signals and derive the expression for probability of error.	12M	CO5	L2
	OR			
11. a)	Elucidate the operation of DPSK with the help of neat diagram.	6M	CO5	L3
b)	Describe the generation and coherent detection of Amplitude Shift Keying (ASK) signal. *** End ***	6M	CO5	L2

	Hall Ticket Number :			
	Code: 20A443T	R	-20	
	Il B.Tech. Il Semester Supplementary Examinations Dec 2022 Electromagnetic Theory (Electronics and Communication Engineering)	/ Jan	2023	
	Max. Marks: 70	Time	: 3 Hou	Jrs
	 Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two mark. 3. Answer ALL the questions in Part-A and Part-B 			
	<u>PART-A</u> (Compulsory question)			
1.	Answer ALL the following short answer questions $(5 \times 2 = 10M)$		со	Blooms
	tate divergence & Stoke's theorem		1	Level L2
	/rite down the Maxwell's equations for steady fields in integral fo	rm.	2	
	/hat is polarization in Dielectrics		3	
	tate Ampere's circuital law.		4	
	st out various types of EM waves based on modes of propagation	on	5	
	PART-B			
	Answer <i>five</i> questions by choosing one question from each unit (5 x 12 =			Blooms
		Marks	CO	Level
	UNIT–I			
2. a)	Determine the cylindrical and spherical coordinates of the			
	following vectors: i. D = (x+z) ay ii. E = (y2 –x 2) aX + xyz ay + (x2 -z 2) az 4M	6M	CO1	L1
b)		0101	COT	LI
D,	ordinate systems.	6M	CO1	L2
	OR			
3. a)	Define divergence, gradient and curl in rectangular,			
	cylindrical and spherical coordinate system with			
	mathematical expressions	6M	CO1	L3
b)				
	Cartesian coordinate system. Find the electric flux density D at (4,7,-8)	6M	CO1	
		OIVI	COT	L2
4. a)				
uj	gauss law.	6M	CO2	L1
b)	Explain in detail about different types of charge distributions		CO2	L3
,			Page 1 c	of 2

Code: 20A443T

			Coue.	20A44J1	
		OR			
5.	a)	Define Electric flux Density? Derive Electric flux density and electric filed intensity for surface charge.	6M	CO2	L4
	b)	Point charges $1mC$ and $-2mC$ are located at $(3, 2, -1)$ and $(-1, -1, 4)$ respectively. Calculate the electric force on a 10nC charge locate at $(0, 3, 1)$ and the electric field intensity at that point	6M	CO2	L2
		UNIT-III		002	
6	a)	Derive the equation for Continuity equation and relaxation			
0.	a)	time	6M	CO3	L2
	b)	Define the following terms (i) Isotropic dielectric			
		(ii) Homogeneous dielectric (iii) Dielectric constant	6M	CO3	L1
		OR			
7.	a)	Explain & derive the boundary conditions for conductor-			
		Dielectric interface for static electric fields	6M	CO3	L3
	b)	Define and derive the relation between E and V	6M	CO3	L3
		UNIT-IV			
8.	a)	State The Law required to calculate magnetic fluex density or			
		magentic field intensity for a given current or current			
		distribution and derive the expression for the same	6M	CO4	L4
	b)	Differentiate scalar and vector magnetic potentials.	6M	CO4	L3
		OR			
9.	a)	State Ampere's circuit law and explain any one of its			
		applications	6M	CO4	L2
	b)	Explain Maxwell's equations in final forms.	6M	CO4	L1
		UNIT–V			
10.	a)	State and prove poynting vector and poynting theorem	6M	CO5	L1
	b)	Explain the wave propagation in lossy dielectrics?	6M	CO5	L4
		OR			
11.	a)	Write short Notes on			
		i) Total internal reflection ii) Brewster Angle	6M	CO5	L2
	b)	Explain about Reflection and Refraction of Plane Waves *** End ***	6M	CO5	L2

*** End ***