\square
Hall Ticket Number :

Code: 20A441T

|| B.Tech. II Semester Supplementary Examinations Dec 2022 / Jan 2023

Linear IC Applications

(Electronics and Communication Engineering)
Max. Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B
PART-A
(Compulsory question)
\(\left.$$
\begin{array}{llc}\text { 1. Answer ALL the following short answer questions } & (5 \times 2=10 \mathrm{M}) & \mathrm{CO}\end{array}
$$ \begin{array}{c}Blooms

Level\end{array}\right]\)| CO 1 | L 1 | |
| :--- | :--- | :--- |
| a) List the AC characteristics of op-amp. | CO 2 | L 6 |
| b) Draw the op-amp integrator circuit. | CO 3 | L 3 |
| c) Give some limitations of op-amp as a comparator. | CO 4 | L 2 |
| d) Describe the key components of PLL. | CO 5 | L 1 |

PART-B
Answer five questions by choosing one question from each unit ($5 \times 12=60 \mathrm{Marks}$)

UNIT-I

2. a) Discuss the various AC and DC characteristics of an op-amp?

6M co1
b) Explain what is an integrator circuit? Discuss the relative advantages and disadvantages if IC'S over discrete assembly.

6M co1
L2

OR

3. a) Draw the block schematic of an op-amp and explain the functions of each block.

6M CO1 L6
b) Compare and contrast ideal and practical op-amp?
$6 \mathrm{M} \mathrm{Co1}$
L2

UNIT-II

4. a) Explain the working of non-Inverting amplifier with a neat diagram.
$6 \mathrm{M} \mathrm{CO2} \quad \mathrm{~L} 2$
b) Draw and explain about adder-subtractor circuit using op-amp.

6M CO2 L3

OR

5. a) Discuss how op-amp is used as a differentiator?

6M CO2 L2
b) Describe how an op-amp can be used as integrator? Also derive expression for the output.

6M co2

UNIT-III

6. a) Explain the working of a Schmitt trigger with neat circuit diagram.

6M CO3
b) Write short notes on: Log and Antilog amplifier

6 M CO

OR

7. a) Compare and contrast saw tooth and triangular wave generator.
b) With neat diagram explain how op-amp can be used for comparator.

6M co3

UNIT-IV

8. a) Write notes on applications of PLL.
b) Draw the functional block diagram of 565IC and explain its working.
$6 \mathrm{M} \mathrm{CO4}$
```
6M co4

\section*{OR}
9. a) Discuss FSK modulation with necessary block diagram.
b) Deliberate the working of an Astable multivibrator using IC555 with circuit diagram

6M co4

\section*{UNIT-V}
10. a) Write notes on \(A / D\) converters.
b) Describe the working of R-2R ladder DAC with neat circuit diagram and write its limitations.

6M cos

\section*{OR}
11. a) Explain the working of dual slope ADC with neat circuit diagram.
b) Sketch and explain the transfer characteristic of a DAC with necessary equations.
\(6 \mathrm{M} \mathrm{CO5} \quad \mathrm{~L} 2\)

6M co5 L3
\(\square\)

\section*{Code: 20AC42T}

\section*{R-20}
|| B.Tech. |l Semester Supplementary Examinations Dec 2022 / Jan 2023

\title{
Numerical Methods and Random Variables
}
(Common to EEE \& ECE)
Max. Marks: 70
Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

\section*{PART-A}
(Compulsory question)
1. Answer ALL the following short answer questions \(\quad(5 \times 2=10 \mathrm{M}) \quad \mathrm{CO}\)
a) Find the missing term in the following data:


\section*{PART-B}

Answer five questions by choosing one question from each unit ( \(5 \times 12=60\) Marks )

\section*{UNIT-I}
2. a) \(B y\) । the bisection metho \(\quad \omega\) an \(a \square\) imate root of the equation
 Carry out the computations up to \(5^{\text {th }}\) stage.

6M CO1
b) Determine the cubic polynomial which takes the following values:
\begin{tabular}{|c|c|c|c|c|}
\hline シion & 0 & 1 & 2 & 3 \\
\hline \(f\) comm & 1 & 2 & 1 & 10 \\
\hline
\end{tabular}

Hence calculate \({ }^{f(4)}\).

\section*{OR}
3. a) Find a real root of the equation by regula-falsi method correct to four decimal places.

b) Use Lagrange's interpolatior \({ }^{\prime \prime} \mathrm{ni}^{\text {run }}\), Determine the value of thod ien rect 10, if the following values of \({ }^{1}\) forrd \({ }^{\prime l a} \mathrm{dta}_{5}\) given:
\begin{tabular}{|c|c|c|c|c|}
\hline  & 5 & 6 & 9 & 11 \\
\hline *: & 12 & 13 & 14 & 16 \\
\hline
\end{tabular}

\section*{UNIT-II}
4. a) Solve \(\int_{0}^{-c} \frac{d x}{1+x^{2}}\) by \(u\) sing trap \(e z o i d a l\) rule.
b) Solve \(\left.\left.\frac{d y}{d x}=\log _{x y) \text { for } y(1 .:}\right)_{y(1 .:}\right)^{\text {) }}\) ), given \({ }_{y(1)}=2\), by using Taylor's series method.

\section*{OR}
5. a) Use Simpson's \(1 / 3\) rule to find \(\iint_{0}^{-5} \underset{0-x^{2}}{\mathbb{F}}\) ing seven ordinates.
 \(y^{\prime}=y^{\prime}+e^{x}, y(0)=0\).
\(y\) co.
\(6 \mathrm{M} \mathrm{CO2}\)
UNIT-III
6. Determine mean, median and standard deviation for the following distribution:
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
\hline Mid Value & 15 & 20 & 25 & 30 & 35 & 40 & 45 & 50 & 55 \\
\hline Frequency & 2 & 22 & 19 & 14 & 3 & 4 & 6 & 1 & 1 \\
\hline
\end{tabular}

OR
7. Determine the correlation coefficient for the following data:
\begin{tabular}{|c|c|c|c|c|c|}
\hline auor & 1 & 2 & 3 & 4 & 5 \\
\hline wir & 2 & 5 & 3 & 8 & 7 \\
\hline
\end{tabular}

\section*{UNIT-IV}
8. A box I contains four tickets numbered 1,2,3, 4 and another box II contains six tickets numbered \(2,4,6,7,8\), and 9 . If one of the two boxes is chosen at random and a ticket is drawn at random from the chosen box, find the probabilities that the ticket drawn is numbered (i) 2 or 4 (ii) 3 (iii) 1 or 9.

\section*{OR}
9. Suppose a continu OR ous R.V. it has_ \(e_{2}\) pr, bability density \(f(x)=\left\{\begin{array}{cl}k\left(1-x_{2}\right) & \text { for } 0<x<1 \\ 0 & \text { elsewhere }\end{array}\right.\)
(a) Find \(\mathrm{k}(\mathrm{b})\) Find \(\mathrm{P}(0.1<\mathrm{x}<0.2)\) (c) \(\mathrm{P}(\mathrm{x}>0.5)\) Using distribution function, determine the probabilities that (d) x is less than 0.3 (e) between 0.4 and 0.6 (f) Calculate mean and variance for the probability density function.

12M CO4

\section*{UNIT-V}
10. a) The probability that a pen manufactured by a company will be defective is 0.1. If 12 such pens are examined, determine the probability that (a) exactly two (b) at least two will be defective.
b) Determine the probability \(p\) that there are 3 defective items in a sample of 100 items if \(2 \%\) of items made in this factory are defective.

6M CO5

\section*{OR}
11. A university awards distinction, first class, second class, third class or pass class according as the student gets \(80 \%\) or more; \(60 \%\) or more; between \(45 \%\) and \(60 \%\); between \(30 \%\) and \(45 \%\); or \(30 \%\) or more marks respectively. If \(5 \%\) obtained distinction and \(10 \%\) failed, determine the percentage of students getting second class. Assume that marks \(X\) are normally distributed.
Hall Ticket Number :
Code: 20A444T
R-20
II B.Tech. II Semester Supplmentary Examinations Dec 2022 / Jan ..... 2023
Advanced Digital Design Concepts(Electronics and Communication Engineering)
Max. Marks: 70 ..... Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B
PART-A
(Compulsory question)
1. Answer ALL the following short answer questions ..... ( \(5 \times 2=10 \mathrm{M})\)a) How many NAND gates are used in a CMOS Inverter?CO1 L1
b) What is a Data object? ..... CO2 ..... L1
c) In short differentiate between Dataflow \& Behaviour Model. ..... CO3 ..... L2
d) What is a Barrel shift register? ..... CO4 ..... L1
e) Write the differences between latches and flipflops. ..... CO5 ..... L2
PART-BAnswer five questions by choosing one question from each unit ( \(5 \times 12=60\) Marks )
Marks ..... Blooms
UNIT-I2. a) Realize a CMOS transistor circuit for 2-input NOR gateand explain its working.6M CO1L3b) Explain about CMOS logic families.\(6 \mathrm{M} \mathrm{CO1}\)
OR
3. a) Explain about CMOS dynamic electrical behaviour. ..... 6M CO1 ..... L1
b) Discuss about CMOS/TTL interfacing. 6M CO1 ..... L2
UNIT-II4. a) Draw and explain about VHDL Design flow.6M CO2L2
b) Briefly discuss about Structural design elements. 6 M CO 2 ..... L1
OR
5. Explain in detail about Component declaration and Component Instantiation.

12M CO2 L1
UNIT-III
6. a) Distinguish variable and Signal assignment statements in VHDL. 6 M CO 3 ..... L2
b) Explain about the variable assignment statement in VHDL. 6 M CO ..... L1
OR
7. Explain in detail about the Delay models. 12M CO3 ..... L1
UNIT-IV
8. a) Design any Demultiplexer using VHDL. ..... \(6 \mathrm{M} \mathrm{co4}\) ..... L4
b) Design binary to gray code converter using VHDL ..... \(6 \mathrm{M} \mathrm{CO4}\) ..... L4
OR
9. a) Design any one code converter of your choice using VHDL 6 M CO ..... L4
b) Design a full adder using VHDL.6 M CO 4L4
UNIT-V
10. a) What is a shift register? Design any Shift register using VHDL. \(6 \mathrm{M} \mathrm{CO5}\) ..... L3
b) Design D-Flip Flop using VHDL OR
11. a) Design JK-Flip Flop using VHDL ..... 6 M cos ..... L4
b) Explain in brief about Impediments to synchronousdesign.6 M cosL1
\(\square\)
Code: 20A442T
II B.Tech. II Semester Supplementry Examinations Dec 2022 / Jan 2023

\section*{Communication Systems}
(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)
1. Answer ALL the following short answer questions ( \(5 \times 2=10 \mathrm{M}\) )
a) What are the disadvantages of double side band full carrier system?

CO1
b) State Carson rule

CO2
c) Compare different pulse modulation schemes. CO
d) Write the quantization noise and signal to noise ratio of PCM system

CO4
e) Plot the BPSK signal for the given sequence 0010110010.

PART-B
Answer five questions by choosing one question from each unit ( \(5 \times 12=60\) Marks )

\section*{UNIT-I}
2. a) With the help of block diagram explain the elements of communication system.

6M CO1
b) Define under-modulation and over-modulation. Explain why over modulation is undesirable?

6M CO1 L2

\section*{OR}
3. a) Draw the block diagram for generation of DSB-SC wave using two AM modulators. A DSB-SC wave is demodulated using coherent detector. Evaluate the effect of frequency error in local carrier frequency of detector.

6M co1
b) Write a short notes on COSTAS Loop.
\(6 \mathrm{M} \mathrm{CO1}\)

\section*{UNIT-II}
4. a) Explain FM Threshold effect

6M CO2 L2
b) Explicate Armstrong method of generation of FM signal.
\(6 \mathrm{M} \mathrm{co2}\)

\section*{OR}
5. a) Explain the generation of Narrow band Frequency Modulation with suitable block diagram.

6 M CO 2
b) Compare AM and FM

6 M CO 2
UNIT-III
6. a) Describe the generation and demodulation of PAM ..... 6 M CO ..... L3
b) With the aid of the block diagram, briefly explain Frequency division multiplexing. 6M CO3 ..... L3
OR
7. a) Explain the generation of PPM.
b) Demonstrate the generation of PWM with a neat circuit diagram \(6 \mathrm{M} \mathrm{CO3}\) ..... L4
UNIT-IV
8. a) With neat block diagram, explain the PCM communicationsystem6 M CO 4L3
b) Give the comparison of DPCM and DM with standard PCM.
\(6 \mathrm{M} \mathrm{CO4}\) ..... L3
OR
9. a) Explain delta modulation in detail with a suitable diagram 6M CO4 ..... L2
b) A television signal with a bandwidth of 4.2 MHz is transmitted using binary PCM. The number of quantization levels is 512. Calculate the transmission bandwidth and output SNR. ..... 6M CO4 L3
UNIT-V
10. Explain coherent generation and detection of BFSK signals and derive the expression for probability of error. 12M co5 ..... L2
OR
11. a) Elucidate the operation of DPSK with the help of neat diagram. \(6 \mathrm{M} \mathrm{Co5}\) ..... L3b) Describe the generation and coherent detection ofAmplitude Shift Keying (ASK) signal.
\(6 \mathrm{M} \mathrm{CO5}\) ..... L2

\section*{R-20}

\section*{Code: 20A443T}
|| B.Tech. II Semester Supplementary Examinations Dec 2022 / Jan 2023

\section*{Electromagnetic Theory} (Electronics and Communication Engineering)

\section*{Max. Marks: 70}

Time: 3 Hours

\title{
Note: 1. Question Paper consists of two parts (Part-A and Part-B) \\ 2. In Part-A, each question carries Two mark. \\ 3. Answer ALL the questions in Part-A and Part-B
}

PART-A
(Compulsory question)
1. Answer ALL the following short answer questions \(\quad(5 \times 2=10 \mathrm{M}) \quad \mathrm{CO}\)\begin{tabular}{c} 
Blooms \\
Level
\end{tabular}
a) State divergence \& Stoke's theorem 1
b) Write down the Maxwell's equations for steady fields in integral form. 2
c) What is polarization in Dielectrics 3
d) State Ampere's circuital law. 4
e) List out various types of EM waves based on modes of propagation 5

PART-B
Answer five questions by choosing one question from each unit ( \(5 \times 12=60\) Marks )

\section*{UNIT-I}

Marks
2. a) Determine the cylindrical and spherical coordinates of the following vectors: i. \(\mathrm{D}=(\mathrm{x}+\mathrm{z})\) ay ii. \(\mathrm{E}=(\mathrm{y} 2-\mathrm{x} 2) \mathrm{aX}+\mathrm{xyz}\) ay + (x2-z 2) az 4M

6M co1
b) Define co-ordinate system? Explain different types of coordinate systems.

6M co1

\section*{OR}
3. a) Define divergence, gradient and curl in rectangular , cylindrical and spherical coordinate system with mathematical expressions

6M co1
b) A point Charge of \(\mathrm{Q}=60 \mathrm{nc}\) is located at the origin of a Cartesian coordinate system. Find the electric flux density D at (4,7,-8)

6M co1

\section*{UNIT-II}
4. a) State Gauss's law and explain any two applications of gauss law.

6 M CO 2
b) Explain in detail about different types of charge distributions

\section*{OR}
5. a) Define Electric flux Density? Derive Electric flux density and electric filed intensity for surface charge.
b) Point charges 1 mC and -2 mC are located at (3, 2, -1) and \((-1,-1,4)\) respectively. Calculate the electric force on a 10 nC charge locate at \((0,3,1)\) and the electric field intensity at that point

6 M CO 2

\section*{UNIT-III}
6. a) Derive the equation for Continuity equation and relaxation time

6 M CO
b) Define the following terms (i) Isotropic dielectric
(ii) Homogeneous dielectric (iii) Dielectric constant

6M CO3
L1

\section*{OR}
7. a) Explain \& derive the boundary conditions for conductorDielectric interface for static electric fields

6M CO3L3
b) Define and derive the relation between E and V

6 M CO

\section*{UNIT-IV}
8. a) State The Law required to calculate magnetic fluex density or magentic field intensity for a given current or current distribution and derive the expression for the same
\(6 \mathrm{M} \mathrm{CO4} \quad \mathrm{~L} 4\)
b) Differentiate scalar and vector magnetic potentials.

6 M CO

\section*{OR}
9. a) State Ampere's circuit law and explain any one of its applications
b) Explain Maxwell's equations in final forms.

6M CO4 L2
\(6 \mathrm{M} \mathrm{co4}\)

\section*{UNIT-V}
10. a) State and prove poynting vector and poynting theorem
b) Explain the wave propagation in lossy dielectrics?

6M co5 L1

\section*{OR}
11. a) Write short Notes on
i) Total internal reflection ii) Brewster Angle
b) Explain about Reflection and Refraction of Plane Waves
\(6 \mathrm{M} \mathrm{CO5}\)```

