	icket Number :	R-20)	
	: 20A445T Il B.Tech. Il Semester Supplementary Examinations Decembe]
	Microprocessor and Interfacing	1 2020		
Max	(Common to CSE, AI&DS and AI&ML) Marks: 70	ime: 3	Hours	
MUX.	*******		10013	
	 Question Paper consists of two parts (Part-A and Part-B) In Part-A, each question carries Two marks. 			
	3. Answer ALL the questions in Part-A and Part-B			
	PART-A			
Δηςινιά	(Compulsory question) Fr ALL the following short answer questions (5 X 2 = 10N)	1) C	0	BL
	mmarize the functioning of INTR pin in 8086.	,	01	L2
,	ecify the format of ICW1 in 8259 PIC.	C		L6
<i>,</i> .	at is mode 0 operation of 8255?	C		L6
	ist the enhanced instruction set of 80386.	CC		L2
,	w the control register of 80386.	CC	D5	L2
-, -	PART-B			
А	nswer <i>five</i> questions by choosing one question from each unit ($5 \ge 12 = 60$	Marks)	
		Marks	СО	BL
	UNIT–I			
2. a)	Explain string instructions supported by 8086 processor?	6M	C01	L2
b)	Give the instruction sequence that compares the first 10	6M	C01	L2
	bytes beginning at STRG1with the first ten bytes			
	beginning at STRG 2 and branches to MATCH if they			
	are equal, otherwise continues in sequence?			
3 J)	Briefly explain about following instructions of 8086	6M	C01	L2
J. aj	i. ADD ii. NEG iii. AAM iv. DIV			
b)	Explain with simple examples how the string manipulation	6M	C01	L2
	instructions in 8086 are useful in block transfer of data.			
	UNIT–II			
4.	What do you mean by a DMA data transfer? Explain the	12M	C02	L6
	implementation in 8086 system using 8257 DMA			
	controller.			
5 2)	How DRAM's are different from SRAM's? Why DRAMs	6M	CO_{2}	L6
J. aj	are said to employ address multiplexing?		502	20
		Dee	o 1 of 7	

	b)	What are the conditions that will cause EU to enter a 'Wait State' in 8086?	6M	CO2	L2
		UNIT–III			
6.	a)	Explain about the control word formats of 8255? Explain the importance of bit set / reset facilities?	6M	CO3	L6
	b)	Give an interfacing diagram, which shows the connections between 8086 and 8259.	6M	CO3	L6
		OR			
7.	a)	Distinguish between Mode set control word and BSR control Word of 8255?	6M	CO3	L6
	b)	Explain how an ADC is connected to 8086 using the ports of 8255? Give relevant interface diagram?	6M	CO3	L6
		UNIT–IV			
8.		Explain the operation of 8251 in Asynchronous mode of communication.	6M	CO4	L6
		Write short note on RS-232C standard.	6M	CO4	L6
		OR			
9.	a)	Draw and explain Command and Mode word formats of 8251.	6M	CO4	L6
	b)	Write initialization instructions to setup 8251 for asynchronous mode, 300baud and 7 bit character with no parity.	6M	CO4	L6
		UNIT–V			
10.	a)	What are the salient features of 80286 in real address mode?	6M	CO5	L2
	b)	Enlist the priority of bus usage in 80286.	6M	CO5	L2
		OR			
11.	a)	Draw and discus the paging mechanism of 80386 in details.	6M	CO5	L2
	b)	Explain the physical address formation in real address mode of 80386.	6M	CO5	L2

*** End ***

	all Ticket Number :	R-20		
Co	de: 20A543T II B.Tech. II Semester Supplementary Examinations December 2	023		
	Operating Systems	020		
	(Common to CSE, AI&DS and AI&ML)			
Mc	Ix. Marks: 70 Time	э: 3 Но	Urs	
Not	e: 1. Question Paper consists of two parts (Part-A and Part-B)			
	2. In Part-A, each question carries Two marks .			
	3. Answer ALL the questions in Part-A and Part-B PART-A			
	(Compulsory question)			
1. Ans	wer ALL the following short answer questions $(5 \times 2 = 10 \text{ M})$	С	о в	L
a) Wł	nat are Operating system Services?	C	01 L	1
b) Ex	plain Critical Section problem.	C	02 L	2
c) De	fine mutual exclusion in deadlock prevention	C	03 L	1
d) Lis	t various Disk-Scheduling Algorithms.	C	04 L	1
e) Illu	strate the structure of an operating system's I/O subsystem	C	05 L	2
	PART-B			
Α	nswer <i>five</i> questions by choosing one question from each unit (5 x 12 = 60		-	
	UNIT–I	Marks	CO	BL
2 a)	Explain the purpose of all types of system calls and discuss			
Ζ. αj	the calls related to Process Control, device management and			
	communications in detail.	6M	CO1	L2
b)	Discuss the following CPU scheduling algorithms with an			
	example: (i) Round Robin (ii) Priority.	6M	CO1	L2
	OR			
3. a)	Explain about Operating System operations.	6M	CO1	L2
b)	List various computer systems Architectures and compare			
	them.	6M	CO1	L2
	UNIT–II			
4. a)	Explain multithreaded server architecture and various			
	multithreading models.	6M	CO2	L2
b)	State the dining philosopher's problem and show how to			
	allocate the several resources among several processes in a deadlock and starvation free manner.	6M	<u> </u>	1.2
			CO2	LJ
	UN			

Code: 2	20A543T
---------	---------

5.	a)	Describe the Readers-Writers Problem. Find the solution for Readers-Writers Problem using Semaphores concept.	еM	000	
				CO2	
	b)	Explain the syntax and semantics of monitor.	6M	CO2	L2
		UNIT–III			
6.	a)	Use Banker's algorithm briefly explains the deadlock avoidance with a suitable example.	6M	CO3	L3
	b)	What is deadlock recovery? Explain various methods of deadlock recovery.	6M	CO3	L2
		OR			
7.	a)	Illustrate the importance of Demand paging in memory management? Take any example for illustration.	6M	CO3	L2
	b)	Explain external fragmentation. In which memory	6М	000	
		management technique it occurs? Explain the solution for it. UNIT-IV	OIVI	CO3	L2
8.	a)	Write short notes on			
		i. File Access Methods ii. File Operations	6M	CO4	L2
	b)	Briefly discuss about the various directory structures.	6M	CO4	L2
		OR			
9.	a)	A Work Queue is as: 23, 89, 132, 42, 187. There are 200 cylinders numbered from $0 - 199$. The disk head starts at number 100 and moves forward. Calculate the total head movement for the following algorithms: i) FCFS ii)SSTF			
		iii)SCAN iv)LOOK v)C-SCAN	8M	CO4	L3
	b)	Distinguish between sequential and direct file access methods	4M	CO4	L2
10.	a)	UNIT–V Demonstrate Goals of Protection.	6M	CO5	L3
	b)	Explain the following system threats			
		i) Worms ii) Viruses iii) Denial of service.	6M	CO5	L2
		OR			
11.	a)	Write about Computer Security classifications.	6M	CO5	L2
	b)	Explain the common approaches for authenticating a user identity.	6M	CO5	L2
		*** End ***			

*** End ***

		mber:											
	Code: 20AC411	•									R-20)	
			nester	Supple	emen	itarv E	xam	ninati	ons D	ecem	ber 2023		
				robab									
		(C		n to CE	-					L)			
	Max. Marks: 70	(0			_,,	001,				,	Time: 3	Hours	
					***	*****							
	Note: 1. Question	-			-			nd Pa i	rt-B)				
	2. In Part-		-					D					
	3. Answer	ALL t	he ques	tions in			Part	-В					
						RT-A							
					-	ory qu							
	Answer ALL the f		-		-				= 10M	,		CO	BL
a)	Define Correlation coefficient of corr			o variab	les. A	lso wr	te th	e forn	nula fo	r Karl	Pearson's	CO1	L1
b)	Two dice are thro	wn. Let	t A be th	ne event	that t	he sum	of th	ne poir	nts on tl	ne face	s is 9. Let		
	B be the event th	at at lea	ast one	number	is 6.F	ind (i) l	P(A	B) (ii)F	P(AUB)			CO2	L3
c)	What is Binomia	l distrib	oution fu	inction?	Write	the fo	ormula	ae for	mean	and va	ariance of		
	Binomial distribut	ion.										CO3	L1
d)	A random sample						on of	5.wha	t can y	ou say	about the		
	maximum error o											CO4	L3
e)	For F -distributior	n , find I	F _{0.05} with	ר v₁ =7 a								CO5	L3
						ART-B							
	Answer <i>five</i> q	uestion	ns by ch	noosing	one	questic	on fro	om ea	ch unit	(5 x 1		-	
											Marks	s CO	BL
					U	NIT–I							
2.	Find mean , m	nedian a	and mod	de for th	e follo	wing d	ata:						
	Class	0-10	10-20	20-30	30-4	0 40-	50 4	50-60	60-70	70-8	0		
	interval	0.10	10 20	20 00					0010	100			
	Frequency	5	8	7	12	28	3	20	10	10	12N	1 CO1	I L3
						OR							
3.	From the follo	wing da	ata calcu	ulate the	rank	correla	tion o	coeffic	ient				
	X	48 3	3 40	9	16	16	65	24	16 క	57			
	Y	13 1	3 24	6	15	4	20	9	6 ′	19	12N	I CO1	I L3
					U	II–TIV							
4.	Suppose a co	ntinuou	is rando	om varia	ble X	has the	e prot	bability	/ densit	y funct	ion		
	$f(x) = K(1-x^2) f(x)$	or 0 <x<< td=""><td>1, and f</td><td>(x)=0 otl</td><td>herwis</td><td>se.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></x<<>	1, and f	(x)=0 otl	herwis	se.							
	Find (i) K (ii)	Mean (i	ii) Varia	nce							12N	1 CO2	2 L3
						OR							
5.	A random var	iable X	has the	followin	g prot	oability	funct	tion:					
	X 1	2	3	4	5	6	7	•	8				
	P(X) K	2K	3K	4K	5K	6K	7	۶ ۲	3K				
	Find the value										121	1 CO2	2 L3
				·····)	, and						1210		0

Hall Ticket Number :

for the analysis of an algorithm with the help of examples. OR a. a) Explain Tower of Hanoi problem and develop a recursive algorithm. b) Write a recursive algorithm to find maximum and minimum in an array. (MIT-II) b) A a) Develop an algorithm to find the k th smallest element in a given array of elements using Divide and Conquer Technique and explain with an example. Discuss its time complexity. b) Explain the Merge Sort algorithm with an example. Give the Time complexity of Merge sort algorithm 6M co2 6M co2 6M co2 6M co2 6M co2 6M co2 6M co2 6M co2	На	II Ticket Number :			
II B.Tech. II Semester Supplementary Examinations December 2023 Design and Analysis of Algorithms (Common to CSE, AI&DS and AI&ML) Max. Marks: 70 Time: 3 Hours Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two marks. 3. Answer ALL the questions in Part-A and Part-B PART-A (Compulsory question) Answer ALL the following short answer questions (5 X 2 = 10M) CO BL What are the characteristics of an algorithm? What is the worst case time complexity of Quick sort? CO1 L1 What is the worst case time complexity of Quick sort? What is Backtracking? What are the constraints used in it? What is Backtracking? What are the constraints used in it? Marks CO UNIT-I Coefine an Algorithm. Explain various Asymptotic notations for the analysis of an algorithm with the help of examples. CO1 Write a recursive algorithm to find maximum and minimum in an array. COR Analysis and Algorithm with an example. Discuss its time complexity. CO2 COR	Cod	e: 204541T	R-20		
Design and Analysis of Algorithms (Common to CSE, AI&DS and AI&ML) Max. Marks: 70 Time: 3 Hours Note: I. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two marks. 3. Answer ALL the questions in Part-A and Part-B 2. In Part-A, each questions in Part-A and Part-B PART-A (Compulsory question) CO BL 0 What are the characteristics of an algorithm? C01 L1 0) What is the worst case time complexity of Quick sort? C01 L1 0) What is the worst case time complexity of Quick sort? C01 L1 1) Define minimum cost spanning tree. C02 L1 2) What is Backtracking? What are the constraints used in it? C04 L1 PART-B Answer five questions by choosing one question from each unit (5 x 12 = 60 Marks) Marks C0 0 UNIT-I Narks C0 L1 2. Define an Algorithm. Explain various Asymptotic notations for the analysis of an algorithm with the help of examples. 12M c01 4. UNIT-I OR 6M c01 b. What is a recursive algorithm to find maximum and minimum in an array. 6M c01 b. Write a recursive al	CUU		2023		
Max. Marks: 70 Time: 3 Hours Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two marks. 3. Answer ALL the question carries Two marks. 3. Answer ALL the question in Part-A and Part-B Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Colspan="2" Other Computer					
Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two marks. 3. Answer ALL the question is Part-A and Part-B PART-A (Compulsory question) Answer ALL the following short answer questions (5 X 2 = 10M) C0 B. What are the characteristics of an algorithm? C01 L1 b) What is the worst case time complexity of Quick sort? C01 L1 c) Define minimum cost spanning tree. C02 L1 c) Define principle of optimality. C02 L1 c) What is Backtracking? What are the constraints used in it? C04 L1 e) What is Backtracking? What are the constraints used in it? C04 L1 b) What is Backtracking? What are the constraints used in it? C04 L1 c) Define an Algorithm. Explain various Asymptotic notations for the analysis of an algorithm with the help of examples. 12M co1 DR OR A Explain Tower of Hanoi problem and develop a recursive algorithm. 6M co1 b) Write a recursive algorithm to find maximum and minimum in an array. 6M co1 0N co1 c) UNIT-I . A) Develop an algorithm to find the k th smallest element in a given array of elements using Divide and Conquer Techni			_		
 2. In Part-A, each question carries Two marks. 3. Answer ALL the questions in Part-A and Part-B PART-A (Compulsory question) Answer ALL the following short answer questions (5 X 2 = 10M) CO BL (Compulsory question) Answer ALL the following short answer questions (5 X 2 = 10M) CO BL (Compulsory question) Answer ALL the following short answer questions (5 X 2 = 10M) CO BL (Compulsory question) Answer ALL the following short answer questions (5 X 2 = 10M) CO BL (Compulsory question) Answer ALL the following short answer questions (5 X 2 = 10M) CO BL (Compulsory question) What are the characteristics of an algorithm? (Col L1 PART-B Answer five questions by choosing one question from each unit (5 x 12 = 60 Marks) Marks CO UNIT-I Define an Algorithm. Explain various Asymptotic notations for the analysis of an algorithm with the help of examples. 12M con OR a) Explain Tower of Hanoi problem and develop a recursive algorithm. b) Write a recursive algorithm to find maximum and minimum in an array. a) Develop an algorithm to find the kth smallest element in a given array of elements using Divide and Conquer Technique and explain with an example. Discuss its time complexity. b) Explain the Merge Sort algorithm with an example. Give the Time complexity of Merge sort algorithm for the Knapsack 	Мах		ne: 3 Hc	ours	
(Compulsory question) Answer ALL the following short answer questions (5 X 2 = 10M) CO BL a) What are the characteristics of an algorithm? CO1 L1 b) What is the worst case time complexity of Quick sort? CO1 L1 c) What is the worst case time complexity of Quick sort? CO1 L1 c) Define minimum cost spanning tree. CO2 L1 d) Define principle of optimality. CO2 L1 e) What is Backtracking? What are the constraints used in it? CO4 L1 PART-B Answer five questions by choosing one question from each unit (5 x 12 = 60 Marks) Marks CO UNIT-I . 2. Define an Algorithm. Explain various Asymptotic notations for the analysis of an algorithm with the help of examples. 12M cO1 0. OR . a) Explain Tower of Hanoi problem and develop a recursive algorithm. 6M cO1 b) Write a recursive algorithm to find maximum and minimum in an array. 6M cO1 a) Develop an algorithm to find the k th smallest element in a given array of elements using Divide and Conquer Technique and explain with an example. Discuss its time complexity. 6M cO2 b) Explain the Merge Sort algorithm with an example. Give the Time complexity of Merge sort algorithm 6M cO2 OR . <	Note	 In Part-A, each question carries Two marks. Answer ALL the questions in Part-A and Part-B 			
Answer ALL the following short answer questions (5 X 2 = 10M) CO BL a) What are the characteristics of an algorithm? CO1 L1 b) What is the worst case time complexity of Quick sort? CO1 L1 c) Define minimum cost spanning tree. CO2 L1 c) Define principle of optimality. CO2 L1 c) Define principle of optimality. CO2 L1 c) What is Backtracking? What are the constraints used in it? CO4 L1 PART-B Answer five questions by choosing one question from each unit (5 x 12 = 60 Marks) Marks CO warks CO UNIT-I Marks CO L1 c) Define an Algorithm. Explain various Asymptotic notations for the analysis of an algorithm with the help of examples. 12M CO1 c) Define an excursive algorithm to find maximum and minimum in an array. 6M CO1 CO1 b) Write a recursive algorithm to find the k th smallest element in a given array of elements using Divide and Conquer Technique and explain with an example. Discuss its time complexity. 6M CO2 b) Explain the Merge Sort algorithm with an example. Give the Time complexity of Merge sort algorithm 6M CO2 b) Explain the Merge Sort algorithm with an example. Give the Time complexity					
 a) What are the characteristics of an algorithm? b) What is the worst case time complexity of Quick sort? c) Define minimum cost spanning tree. c) Define principle of optimality. c) What is Backtracking? What are the constraints used in it? c) What is Backtracking? What are the constraints used in it? c) What is Backtracking? What are the constraints used in it? c) What is Backtracking? What are the constraints used in it? c) What is Backtracking? What are the constraints used in it? c) What is Backtracking? What are the constraints used in it? c) What is Backtracking? What are the constraints used in it? c) UNIT-I Answer five questions by choosing one question from each unit (5 x 12 = 60 Marks) Marks CO UNIT-I Define an Algorithm. Explain various Asymptotic notations for the analysis of an algorithm with the help of examples. a) Explain Tower of Hanoi problem and develop a recursive algorithm. b) Write a recursive algorithm to find maximum and minimum in an array. a) Develop an algorithm to find the kth smallest element in a given array of elements using Divide and Conquer Technique and explain with an example. Discuss its time complexity. b) Explain the Merge Sort algorithm with an example. Give the Time complexity of Merge sort algorithm c) Explain Knapsack Problem using greedy method with the help of an example. Give an algorithm for the Knapsack 	1 Δ ησ		M) C() BI	
(i) What is the worst case time complexity of Quick sort? CO1 L1 (ii) Define minimum cost spanning tree. CO2 L1 (iii) Define principle of optimality. CO2 L1 (iiii) Define principle of optimality. CO2 L1 (iiiii) Define principle of optimality. CO2 L1 (iiiiiiiiiiii) Define principle of optimality. CO2 L1 (iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii					
c) Define minimum cost spanning tree. CO2 L1 c) Define principle of optimality. CO2 L1 c) Define principle of optimality. CO2 L1 c) Define principle of optimality. CO4 L1 e) What is Backtracking? What are the constraints used in it? CO4 L1 e) What is Backtracking? What are the constraints used in it? CO4 L1 PART-B Answer five questions by choosing one question from each unit (5 x 12 = 60 Marks) Marks CO Image: Co Image: Co Image: Co Marks CO Image: Co Image: Co Image: Co Image: Co Marks CO Image: Co Imag	,	C C			
 a) Develop an algorithm to find the kth smallest element in a given array of elements using Divide and Conquer Technique and explain with an example. Discuss its time complexity. b) Explain Knapsack Problem using greedy method with the help of an example. Give an algorithm for the Knapsack 	,				
 What is Backtracking? What are the constraints used in it? What is Backtracking? What are the constraints used in it? CO4 L1 PART-B Answer five questions by choosing one question from each unit (5 x 12 = 60 Marks) Marks CO UNIT-I Define an Algorithm. Explain various Asymptotic notations for the analysis of an algorithm with the help of examples. 12M co1 OR a) Explain Tower of Hanoi problem and develop a recursive algorithm. b) Write a recursive algorithm to find maximum and minimum in an array. A) Develop an algorithm to find the kth smallest element in a given array of elements using Divide and Conquer Technique and explain with an example. Discuss its time complexity. b) Explain the Merge Sort algorithm with an example. Give the Time complexity of Merge sort algorithm A) Explain Knapsack Problem using greedy method with the help of an example. Give an algorithm for the Knapsack 	,				
PART-B Answer five questions by choosing one question from each unit (5 x 12 = 60 Marks) Marks CO Warks CO UNIT-I C. Define an Algorithm. Explain various Asymptotic notations for the analysis of an algorithm with the help of examples. OR B. A) Explain Tower of Hanoi problem and develop a recursive algorithm. GM co1 DW Write a recursive algorithm to find maximum and minimum in an array. OM co1 UNIT-II A. a) Develop an algorithm to find the k th smallest element in a given array of elements using Divide and Conquer Technique and explain with an example. Discuss its time complexity. OR Analysis of an algorithm with an example. Give the Time complexity of Merge sort algorithm OR OR OR <td colsp<="" td=""><td></td><td></td><td></td><td></td></td>	<td></td> <td></td> <td></td> <td></td>				
Answer five questions by choosing one question from each unit (5 x 12 = 60 Marks) Marks CO Warks CO UNIT-I Define an Algorithm. Explain various Asymptotic notations for the analysis of an algorithm with the help of examples. 12M co1 0R 12M co1 8. a) Explain Tower of Hanoi problem and develop a recursive algorithm. 6M co1 b) Write a recursive algorithm to find maximum and minimum in an array. 6M co1 construct UNIT-II 8. a) Develop an algorithm to find the k th smallest element in a given array of elements using Divide and Conquer Technique and explain with an example. Discuss its time complexity. 6M co2 b) Explain the Merge Sort algorithm with an example. Give the Time complexity of Merge sort algorithm 6M co2 construct OR construct 0R	e) vvr	.		74 LI	
Marks CO UNIT-I Define an Algorithm. Explain various Asymptotic notations for the analysis of an algorithm with the help of examples. OR a) Explain Tower of Hanoi problem and develop a recursive algorithm. b) Write a recursive algorithm to find maximum and minimum in an array. (Marks CO DR 12M CO1 12M CO1 6M CO1 b) Write a recursive algorithm to find maximum and minimum in an array. (Marks CO (CO1	An		60 Marks)	
 Define an Algorithm. Explain various Asymptotic notations for the analysis of an algorithm with the help of examples. OR a) Explain Tower of Hanoi problem and develop a recursive algorithm. b) Write a recursive algorithm to find maximum and minimum in an array. CO1 UNIT-II A) Develop an algorithm to find the kth smallest element in a given array of elements using Divide and Conquer Technique and explain with an example. Discuss its time complexity. b) Explain the Merge Sort algorithm with an example. Give the Time complexity of Merge sort algorithm 6M co2 6M co2 6M co2 6M co2 6M co2 				•	
 for the analysis of an algorithm with the help of examples. I2M CO1 OR I2M CO1 OR I2M CO1 I2M CO2 I2M CO2 I2M CO2 I2M CO2 I2M CO2 I2M CO		UNIT–I			
OR 8. a) Explain Tower of Hanoi problem and develop a recursive algorithm. b) Write a recursive algorithm to find maximum and minimum in an array. UNIT-II 4. a) Develop an algorithm to find the k th smallest element in a given array of elements using Divide and Conquer Technique and explain with an example. Discuss its time complexity. b) Explain the Merge Sort algorithm with an example. Give the Time complexity of Merge sort algorithm 6M co2 6M co2 6M co2 6M co2	2.	Define an Algorithm. Explain various Asymptotic notations			
 a) Explain Tower of Hanoi problem and develop a recursive algorithm. b) Write a recursive algorithm to find maximum and minimum in an array. a) Develop an algorithm to find the kth smallest element in a given array of elements using Divide and Conquer Technique and explain with an example. Discuss its time complexity. b) Explain the Merge Sort algorithm with an example. Give the Time complexity of Merge sort algorithm b) Explain Knapsack Problem using greedy method with the help of an example. Give an algorithm for the Knapsack 		for the analysis of an algorithm with the help of examples.	12M	CO1	
 algorithm. b) Write a recursive algorithm to find maximum and minimum in an array. UNIT-II A) Develop an algorithm to find the kth smallest element in a given array of elements using Divide and Conquer Technique and explain with an example. Discuss its time complexity. b) Explain the Merge Sort algorithm with an example. Give the Time complexity of Merge sort algorithm b) Explain Knapsack Problem using greedy method with the help of an example. Give an algorithm for the Knapsack 		_			
 an array. UNIT-II A) Develop an algorithm to find the kth smallest element in a given array of elements using Divide and Conquer Technique and explain with an example. Discuss its time complexity. b) Explain the Merge Sort algorithm with an example. Give the Time complexity of Merge sort algorithm OR OR OR OR OR 	3. a)			CO1	
 UNIT-II A. a) Develop an algorithm to find the kth smallest element in a given array of elements using Divide and Conquer Technique and explain with an example. Discuss its time complexity. b) Explain the Merge Sort algorithm with an example. Give the Time complexity of Merge sort algorithm b) Explain Knapsack Problem using greedy method with the help of an example. Give an algorithm for the Knapsack 	b)	Write a recursive algorithm to find maximum and minimum in			
 A. a) Develop an algorithm to find the kth smallest element in a given array of elements using Divide and Conquer Technique and explain with an example. Discuss its time complexity. b) Explain the Merge Sort algorithm with an example. Give the Time complexity of Merge sort algorithm b) Explain Knapsack Problem using greedy method with the help of an example. Give an algorithm for the Knapsack 		an array.	6M	CO1	
 given array of elements using Divide and Conquer Technique and explain with an example. Discuss its time complexity. b) Explain the Merge Sort algorithm with an example. Give the Time complexity of Merge sort algorithm 6M CO2 6M CO2 6M CO2 6M CO2 					
complexity.6M co2b) Explain the Merge Sort algorithm with an example. Give the Time complexity of Merge sort algorithm6M co2OR6M co2OR5. a) Explain Knapsack Problem using greedy method with the help of an example. Give an algorithm for the Knapsack	4. a)				
 b) Explain the Merge Sort algorithm with an example. Give the Time complexity of Merge sort algorithm 6M CO2 OR 5. a) Explain Knapsack Problem using greedy method with the help of an example. Give an algorithm for the Knapsack 					
Time complexity of Merge sort algorithm 6M co2 OR 5. a) Explain Knapsack Problem using greedy method with the help of an example. Give an algorithm for the Knapsack				CO2	
OR 5. a) Explain Knapsack Problem using greedy method with the help of an example. Give an algorithm for the Knapsack	b)				
5. a) Explain Knapsack Problem using greedy method with the help of an example. Give an algorithm for the Knapsack			ЮIVI	CO2	
help of an example. Give an algorithm for the Knapsack	5 2)				
· · · · ·	э. а)				
				CO^{2}	
				002	

		Code	e: 20A54	1 1T	
	b)				
		example kruskal's algorithm for finding the minimum cost			
		spanning tree.	6M	CO2	L1
		UNIT–III			
6.		Explain Multi Stage Graph Problem using Forward approach			
		with the help of an example using Dynamic Programming.	12M	CO3	L2
		OR			
7.		Discuss Optimal Binary Search tree problem with the help			
		of an example.	12M	CO3	L6
		UNIT–IV			
8.	a)	Define backtracking. Give the general algorithm for			
		backtracking problems.	6M	CO4	L1
	b)	Explain the 4-Queen's problem with the help of example.	6M	CO4	L5
		OR			
9.		Explain knapsack problem with the help of example using			
		branch and bound.	12M	CO4	L5
		UNIT-V			
10.		Discuss the basic concepts of NP-Hard and NP-Complete			
		problems.	12M	CO5	L6
		OR			
11.	a)	Explain Cooks theorem.	ЗM	CO5	L2
	b)	Distinguish between non deterministic and deterministic			
	•	algorithms.	9M	CO5	L4
		- *** End ***			

*** End ***

	Hall Ticket Number :														
	Code: 20A542T								1	r.	J	<u>-</u>	R-20		
	ll B.Tech. II Ser	neste	er Si	upp	lem	nent	ary	Exar	ninc	atior	ns D	ecem	nber 2023		
	Fo	rmal	l Laı	ngu	Jago	es c	Ind	Aut	omo	ata	The	ory			
		(C	omp	oute	er Sc	ienc	e ar	nd Ei	ngin	eerii	ng)				
	Max. Marks: 70					****	****	F					Time: 3 H	ours	
	Note: 1. Question Pape 2. In Part-A, each 3. Answer ALL	h que	stion	car	ries '	oarts Two	(Par mar	t-A a ˈks.		Part-	B)				
	J. Aliswei ALL	ine qi	Jesti	UIIS	111 1 6		RT-A		ι-D						
				(0	Comr		ry qu		n)						
1. An	swer ALL the following	short	t ans		-		•		X 2	= 10	M)			CO	BL
a)	Give the DFA accepting	the la	ngua	ige c	over	the a	Ipha	bet 0	, 1 tl	hat h	ave t	the set	of all strings		
	that either begins or end	(or bo	oth) v	vith (01.									CO1	L3
b)	State pumping lemma for	[.] regul	lar la	ingu	ages									CO2	L1
c)	Why some languages are	e not c	decid	lable	e or e	even	Turir	ng – I	ecog	niza	ble?			CO5	L2
,	Is it possible to reduce	the	unit	pro	ducti	on ii	n co	ntext	free	e gra	mma	ar? Ju	stify through		_
	example.													CO3	
e)	Differentiate 2-way FA ar	nd TM	?											CO5	L1
							<u> RT-В</u>							,	
	Answer five questio	ns by	' cho	osir	ng oi	ne q	uesti	on fi	rom	eacr	uni	t (5 x ′			
													Marks	CO	BL
2.	a) Minimize the follow	ing D	FA			UN	IT–I								
	0 q3) 0	Ĺ	-(((q4))				q5		0,1				

b) Draw a deterministic and non-deterministic finite automate which accept 00 and 11 at the end of a string containing 0, 1 in it, e.g., 01010100 but not 000111010.

q1

1

ο

q2=

0

3. Convert NDFA to DFA and then do minimization of that DFA.

1

qO

7M CO1 L3

L3

L3

5M CO1

12M CO1

			de: 20A	542T	
4.	a)	UNIT–II Construct a finite automata for the regular expression (0+1)*(00+11)(0+1)*.	еM	CO2	12
ч.	b)	State pumping lemma for regular languages. What are the conditions			
		involved in it? Explain with an example. OR	DIVI	CO2	LI
5.		Define regular language and regular expressions. Find regular expression			
5.		for the following:			
		Language of all string that do not end with 01.	4014	000	10
		Describe the language corresponding to following: (1+01)*(0+01)* UNIT-III	12IVI	CO2	LZ
6.	a)	Convert the following grammar into CNF. S→aAD			
		A→aB			
		B→bAB			
		D→d	6M	CO3	L3
	b)	Discuss Normal forms-Chomsky and Greibach Normal forms with example.	6M	CO3	L1
		OR			
7.	a)	Give proof for the statement: if L is a context free language, then can we construct PDA accepting L by empty state, i.e. $L=N(A)$.	5M	CO4	L1
	b)	Let G be a grammar S \rightarrow 0B 1A, A \rightarrow 0 0S 1AA, B \rightarrow 1 1S 0BB. For the			
		string 00110101 find its leftmost derivation and derivation tree.	7M	CO3	L2
8.	a)	Explain the definition of a non-deterministic push down automata (ndpa).	014	004	
	L)	Construct PDA accepting L={wcw ^r $w \in \{a,b\}^*$ } by final state.	61VI	CO4	L2
	b)	Construct a PDA equivalent to the following grammar S→aAA			
		A→aS / bS / a	6M	CO4	L3
		OR			
9.	a)	Design a PDA for the language L={ WW ^R / W is in (0+1)* }	6M	CO4	L3
	b)	Obtain PDA to accept all strings generated by the language {a ⁿ b ^m a ⁿ m, n > 1}	6M	CO4	L3
10.	a)	Design Turing Machine to increment the value of any binary number by one. The output should also be a binary number with value one more the			
		number given.	6M	CO5	L2
	b)	Find whether the post correspondence problem $P = \{(10, 101), (011, 11), (101, 011)\}$ has a match. Give the solution.	6M	CO5	L3
		OR			
11.	a)	Design a Turing Machine to accept the strings having equal number of 0's			
		and 1's	8M	CO5	L2
	b)	Explain universal Turing machine.	4M	CO5	L1
		*** End ***			