\square
Hall Ticket Number :

Code: 20A445T

|| B.Tech. II Semester Supplementary Examinations December 2023
Microprocessor and Interfacing
(Common to CSE, AI\&DS and AI\&ML)

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two marks.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer ALL the following short answer questions ($5 \times 2=10 \mathrm{M}$) CO $\quad \mathrm{BL}$
a) Summarize the functioning of INTR pin in 8086 CO1 L2
b) Specify the format of ICW1 in 8259 PIC. CO2 L6
c) What is mode 0 operation of 8255 ? CO L6
d) Enlist the enhanced instruction set of 80386 CO4 L2
e) Draw the control register of 80386 CO5 L2

PART-B
Answer five questions by choosing one question from each unit ($5 \times 12=60 \mathrm{Marks}$)

UNIT-I

2. a) Explain string instructions supported by 8086 processor?
b) Give the instruction sequence that compares the first 10

6M C01 L2 bytes beginning at STRG1with the first ten bytes beginning at STRG 2 and branches to MATCH if they are equal, otherwise continues in sequence?

OR

3. a) Briefly explain about following instructions of $8086 \quad 6 \mathrm{M} \quad \mathrm{C} 01 \quad \mathrm{~L} 2$ i. ADD ii. NEG iii. AAM iv. DIV
b) Explain with simple examples how the string manipulation
$6 \mathrm{M} \mathrm{C01} \mathrm{L2}$ instructions in 8086 are useful in block transfer of data.

UNIT-II

4. What do you mean by a DMA data transfer? Explain the 12M C02 L6 implementation in 8086 system using 8257 DMA controller.

OR

5. a) How DRAM's are different from SRAM's? Why DRAMs

6M CO2 L6 are said to employ address multiplexing?
b) What are the conditions that will cause EU to enter a 6 M CO2 L2 'Wait State' in 8086 ?

UNIT-III

6. a) Explain about the control word formats of 8255? Explain 6 M CO3 L6 the importance of bit set / reset facilities?
b) Give an interfacing diagram, which shows the 6 M CO3 L6 connections between 8086 and 8259.

OR

7. a) Distinguish between Mode set control word and BSR 6M CO3 L6 control Word of 8255?
b) Explain how an ADC is connected to 8086 using the

6M CO3 L6 ports of 8255 ? Give relevant interface diagram?

UNIT-IV

9. a) Draw and explain Command and Mode word formats of 6 M CO4 L6
8251 .
b) Write initialization instructions to setup 8251 for 6M CO4 L6 asynchronous mode, 300baud and 7 bit character with no parity.

UNIT-V

10. a) What are the salient features of 80286 in real address
mode?
b) Enlist the priority of bus usage in 80286 CO2 OR
11. a) Draw and discus the paging mechanism of 80386 in 6 M CO5 L2 details.
b) Explain the physical address formation in real address 6 M CO5 L2 mode of 80386 .
\square

Code: 20A543T

II B.Tech. II Semester Supplementary Examinations December 2023

Operating Systems

(Common to CSE, AI\&DS and AI\&ML)
Max. Marks: 70
Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two marks.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer ALL the following short answer questions	$(5 \times 2=10 M)$	CO
BL		
a) What are Operating system Services?	CO1	L1
b) Explain Critical Section problem.	CO2	L2
c) Define mutual exclusion in deadlock prevention	CO3	L1
d) List various Disk-Scheduling Algorithms.	CO4	L1
e) Illustrate the structure of an operating system's I/O subsystem	CO5	L2

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)

UNIT-I

2. a) Explain the purpose of all types of system calls and discuss the calls related to Process Control, device management and communications in detail.
b) Discuss the following CPU scheduling algorithms with an example: (i) Round Robin (ii) Priority.

6M CO1 L2
OR
3. a) Explain about Operating System operations.

6M CO1 L2
b) List various computer systems Architectures and compare them.

6M CO1 L2

UNIT-II

4. a) Explain multithreaded server architecture and various multithreading models.
$6 \mathrm{M} \mathrm{CO2} \mathrm{~L} 2$
b) State the dining philosopher's problem and show how to allocate the several resources among several processes in a deadlock and starvation free manner.
$6 \mathrm{M} \mathrm{CO2}$ L3
5. a) Describe the Readers-Writers Problem. Find the solution for Readers-Writers Problem using Semaphores concept.
b) Explain the syntax and semantics of monitor.
6 M CO 2 L3
6 M CO 2 L2
UNIT-III
6. a) Use Banker's algorithm briefly explains the deadlock avoidance with a suitable example. 6 M CO3 L3
b) What is deadlock recovery? Explain various methods of deadlock recovery.

OR

7. a) Illustrate the importance of Demand paging in memory management? Take any example for illustration.
$6 \mathrm{M} \mathrm{CO3} \mathrm{~L} 2$
b) Explain external fragmentation. In which memory management technique it occurs? Explain the solution for it

UNIT-IV

8. a) Write short notes on
i. File Access Methods ii. File Operations6 M CO4 L2b) Briefly discuss about the various directory structures.$6 \mathrm{M} \mathrm{CO4} \mathrm{L2}$

OR

9. a) A Work Queue is as: $23,89,132,42,187$. There are 200 cylinders numbered from 0 - 199. The disk head starts at number 100 and moves forward. Calculate the total head movement for the following algorithms: i) FCFS ii)SSTF iii)SCAN iv)LOOK v)C-SCAN
b) Distinguish between sequential and direct file access methods

UNIT-V

10. a) Demonstrate Goals of Protection.
8M CO4 L3
4 M CO4 L2
$6 \mathrm{M} \mathrm{CO5}$ L3
b) Explain the following system threats
i) Worms ii) Viruses iii) Denial of service.
6 M co5 L2

OR

11. a) Write about Computer Security classifications.
b) Explain the common approaches for authenticating a user identity.
6 M CO5 L2
$6 \mathrm{M} \mathrm{CO5} \mathrm{L2}$
*** End ***
|| B.Tech. II Semester Supplementary Examinations December 2023

Probability and Statistics

(Common to CE, ME, CSE, AI\&DS and AI\&ML)
Max. Marks: 70
Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two marks.
3. Answer ALL the questions in Part-A and Part-B

PART-A

(Compulsory question)
1.Answer ALL the following short answer questions $\quad(5 \times 2=10 \mathrm{M}) \quad \mathrm{CO} \quad \mathrm{BL}$
a) Define Correlation between two variables. Also write the formula for Karl Pearson's coefficient of correlation.
b) Two dice are thrown. Let A be the event that the sum of the points on the faces is 9 . Let B be the event that at least one number is 6.Find (i) $P(A \cap B)$ (ii) $P(A \cup B)$
c) What is Binomial distribution function? Write the formulae for mean and variance of Binomial distribution.
d) A random sample of size 100 has a standard deviation of 5 .what can you say about the maximum error of estimate with 95% confidence?

CO4 L3
e) For F-distribution, find $F_{0.05}$ with $v_{1}=7$ and $v_{2}=15$

CO5 L3
PART-B
Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)

UNIT-I

2. Find mean , median and mode for the following data:

Class interval	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$
Frequency	5	8	7	12	28	20	10	10

OR

3. From the following data calculate the rank correlation coefficient

X	48	33	40	9	16	16	65	24	16	57
Y	13	13	24	6	15	4	20	9	6	19

12M CO1 L3

UNIT-II

4. Suppose a continuous random variable X has the probability density function $f(x)=K\left(1-x^{2}\right)$ for $0<x<1$, and $f(x)=0$ otherwise.
Find (i) K (ii) Mean (iii) Variance

OR

5. A random variable X has the following probability function:

X	1	2	3	4	5	6	7	8
$\mathrm{P}(\mathrm{X})$	K	2 K	3 K	4 K	5 K	6 K	7 K	8 K

Find the value of (i) K (ii) Mean (iii) Variance

UNIT-III

6. Seven coins are tossed and the number of heads are noted. The experiment is repeated 128 times and the following distribution is obtained.

No .of heads	0	1	2	3	4	5	6	7
Frequency	7	6	19	35	30	23	7	1

Fit a binomial distribution assuming that coin is unbiased

OR

7. The marks obtained in mathematics by 1000 students is normally distributed with mean 78% and standard deviation 11\%. Determine
(i) How many students got marks above 90%
(ii) What was the highest mark obtained by lowest 10% of the students
(iii) Within what limits did the middle of 90% of the students lie

UNIT-IV

8. a) A researcher wants to know the intelligence of students in a school. He selected two groups of students. In the first group there are 150 students having mean IQ of 75 with Standard deviation of 15 . In the second group there are 250 students having mean IQ of 70 with Standard deviation of 20.test whether there is any significant difference in the two groups by considering 1% level of significance.
b) In a big city 325 men out of 600 men were found to be smokers. Does this information support the conclusion that majority of men in this city are smokers? level of significance 5%

OR

9. Before an increase on excise duty on tea 500 people out of a sample of 900 found to have the habit of having tea. After an increase on excise duty 250 are found to have tea habit among 1100. Is there any decrease in the consumption of tea? Test at 5% level of significance.

UNIT-V

10. Scores obtained in a shooting competition by 10 soldiers before and after intensive training are given below:

Before	67	24	57	55	63	54	56	68	33	43
After	70	38	58	58	56	67	68	75	42	38

Test whether the intensive training is useful at 0.05 level of significance

OR

11. Two researchers adopted different sampling techniques while investigating some group of students to find the number of students falling into different intelligence level. The results are as follows:

Researcher	Below Average	Average	Above Average	Genius
X	86	60	44	10
Y	40	33	25	2

Would you say that the sampling techniques adopted by two researchers are significantly different? Level of significance 5\%

12M CO5 L4

$$
\text { *** End }{ }^{* * *}
$$

\square

Code: 20A541T

|| B.Tech. I| Semester Supplementary Examinations December 2023

Design and Analysis of Algorithms

(Common to CSE, AI\&DS and AI\&ML)
Max. Marks: 70
Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two marks.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer ALL the following short answer questions ($5 \times 2=10 \mathrm{M}$) CO BL
a) What are the characteristics of an algorithm?
b) What is the worst case time complexity of Quick sort?

CO1 L1
c) Define minimum cost spanning tree.

CO1 L1
d) Define principle of optimality.

CO2 L1
e) What is Backtracking? What are the constraints used in it? CO2 L1

PART-B
Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)

UNIT-I

2. Define an Algorithm. Explain various Asymptotic notations for the analysis of an algorithm with the help of examples.

OR

3. a) Explain Tower of Hanoi problem and develop a recursive algorithm.
b) Write a recursive algorithm to find maximum and minimum in an array.

6M CO1 L1

UNIT-II

4. a) Develop an algorithm to find the $\mathrm{k}^{\text {th }}$ smallest element in a given array of elements using Divide and Conquer Technique and explain with an example. Discuss its time complexity.
$6 \mathrm{M} \mathrm{CO2}$ L3
b) Explain the Merge Sort algorithm with an example. Give the Time complexity of Merge sort algorithm
$6 \mathrm{M} \mathrm{CO2}$ L2

OR

5. a) Explain Knapsack Problem using greedy method with the help of an example. Give an algorithm for the Knapsack problem.
b) Define Minimum cost spanning tree. Explain with the help of example kruskal's algorithm for finding the minimum cost spanning tree. $6 \mathrm{M} \mathrm{CO2} \mathrm{~L} 1$
UNIT-III
6. Explain Multi Stage Graph Problem using Forward approach with the help of an example using Dynamic Programming. 12M co3 L2
OR
7. Discuss Optimal Binary Search tree problem with the help of an example. 12M CO3 L6
UNIT-IV
8. a) Define backtracking. Give the general algorithm for backtracking problems. 6M CO4 L1
b) Explain the 4-Queen's problem with the help of example. 6 M CO4 L5
OR
9. Explain knapsack problem with the help of example using branch and bound. 12M CO4 L5
UNIT-V
10. Discuss the basic concepts of NP-Hard and NP-Complete problems. 12M Co5 L6
OR
11. a) Explain Cooks theorem. 3 M CO5 L2
b) Distinguish between non deterministic and deterministic algorithms. 9M CO5 L4

Hall Ticket Number : \square

Code: 20A542T

II B.Tech. II Semester Supplementary Examinations December 2023

Formal Languages and Automata Theory

(Computer Science and Engineering)
Max. Marks: 70
Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two marks.
3. Answer ALL the questions in Part-A and Part-B

PART-A

(Compulsory question)

1. Answer ALL the following short answer questions $\quad(5 \times 2=10 \mathrm{M})$
a) Give the DFA accepting the language over the alphabet 0,1 that have the set of all strings that either begins or end (or both) with 01.
b) State pumping lemma for regular languages.
c) Why some languages are not decidable or even Turing - recognizable?
d) Is it possible to reduce the unit production in context free grammar? Justify through
example.
e) Differentiate 2-way FA and TM?

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=\mathbf{6 0}$ Marks)

UNIT-I

2. a) Minimize the following DFA

b) Draw a deterministic and non-deterministic finite automate which accept 00 and 11 at the end of a string containing $0,1 \mathrm{in}$ it, e.g., 01010100 but not 000111010.

7M CO1 L3

5M CO1 L3

OR

3. Convert NDFA to DFA and then do minimization of that DFA.

12M CO1 L3

UNIT-II

4. a) Construct a finite automata for the regular expression $(0+1)^{*}(00+11)(0+1)^{*}$.
b) State pumping lemma for regular languages. What are the conditions involved in it? Explain with an example.

6 M CO 2
L1

OR

5. Define regular language and regular expressions. Find regular expression for the following:
Language of all string that do not end with 01.
Describe the language corresponding to following: $(1+01)^{*}(0+01)^{*}$
12 M CO L2

UNIT-III

6. a) Convert the following grammar into CNF.
$S \rightarrow a A D$
$A \rightarrow a B$
$B \rightarrow b A B$
$D \rightarrow d$
b) Discuss Normal forms-Chomsky and Greibach Normal forms with example. 6 M CO3 L3
6 M CO3 L1
OR
7. a) Give proof for the statement: if L is a context free language, then can we construct PDA accepting L by empty state, i.e. $L=N(A)$.
b) Let G be a grammar $S \rightarrow 0 B|1 A, A \rightarrow 0| 0 S|1 A A, B \rightarrow 1| 1 S \mid 0 B B$. For the string 00110101 find its leftmost derivation and derivation tree.

5M CO4 L1

UNIT-IV

8. a) Explain the definition of a non-deterministic push down automata (ndpa). Construct PDA accepting $L=\left\{w c w^{r} \mid w \in\{a, b\}^{*}\right\}$ by final state.

6M CO4 L2
b) Construct a PDA equivalent to the following grammar $S \rightarrow a A A$
$A \rightarrow a S / b S / a$
6 M CO4 L3

OR

9. a) Design a PDA for the language $L=\left\{W^{R} / W\right.$ is in $\left.(0+1)^{*}\right\}$

6M CO4
L3
b) Obtain PDA to accept all strings generated by the language $\left\{a^{n} b^{m} a^{n} \mid m, n>1\right\}$

6 M CO 4 L3

UNIT-V

10. a) Design Turing Machine to increment the value of any binary number by one. The output should also be a binary number with value one more the number given.

6 M CO5 L2
b) Find whether the post correspondence problem $P=\{(10,101),(011,11)$, $(101,011)$ h has a match. Give the solution.
$6 \mathrm{M} \mathrm{CO5}$ L3

OR

11. a) Design a Turing Machine to accept the strings having equal number of 0 's and 1's

8M CO5 L2
b) Explain universal Turing machine.
$4 \mathrm{M} \quad \mathrm{CO} \quad \mathrm{L} 1$
*** End ***

