]								٦				
	Н	all Ticket Numbe	r:											R-20]
	С	ode: 20AC41T												K-20		
		ll B.Tech. II Se	mestei	r Sup	ple	ment	ary Ex	ami	nati	ons	Dec	20)22 / Jo	an 202	3	
						ability										
			(0	Com	mor	n to CE	, ME,	CSE	and	Al&	DS)			_		
	Μ	ax. Marks: 70				**	*****	*					Ti	me: 3 ⊦	lours	5
	N	ote: 1. Question P	ner coi	nciete	oft				and I	Part.	-R)					
	110	2. In Part-A, e	•			-				art	-D)					
		3. Answer AI	-						•t-B							
				[ART-A									
	(Compulsory question)															
	1	Answer ALL the f	ollowin	a sh		-				5 X	2 = 2	10M)	СО		looms
				-			•		```				,			Level
,		engineering group service. The daily				•										L1
		mean and median		15 01	COI	10115 10		ays c		1, 9,	17,	19, 1	4, 5. 1 1			
		e the axioms of pr		,										2		L1
		ne Poisson distrib			to ito	const	ante							3		L1
,		cuss about one tail					into.							4		L1
,		e the test statistic												5		L1
6) (vviit			u sai	npie									5		
		A	4 1		•_		ART-I			-1		-	12 (0	N/		
		Answer <i>five</i> qu	estions i	by ch	OOSII	ig one	quesu	on iro	om ea	cn u	mit (ЭХ.	12 = 00			Blooms
						1 18 11 T	•							Marks	СО	Level
2.		Find the value of	moon	nodo	and	UNIT		tha d	loto c	uivon	bolo					
۷.						1				- 			400	7		
		Weight (kg) 93- 97	98- 102		03- 07	108- 112		3- 17	118 122		123 127		128- 132			
		Number of 3	5		12	17	1	4	6		3		1	12M	1	L2
		students				OR								12101	1	LZ
0	-)				44: -			- 4!	f 41	f.	- 11					
3.	a)	Calculate the Ka years) of husbane									DIIOW	ing a	ages (in	1		
								1			22	25	20			
		Age of Husbar		27		8 28		30			33	35	38	6M	1	L3
	F)	Age of wife	18	20		2 27		29			29	28	29		I	LJ
	b)	A test in statistic according to their			•								•••			
		to low, together w											Sin ngi	•		
		Name	Rai	-	Krish				Achy		Par		Pragni			
		Income (Rs '00			4.2			3.2	20		18		17.5	6M	1	L3
			0) 0.	<u> </u>		0				,			11.0	•	•	
						UNIT										
4.	a)	Define a discrete	random	i varia	able	and its	probal	oility	distril	outio	on fur	nctio	n.	6M	2	L3
	b)	If the probab	lity de	ensity	/ 0	fa	rando	m	varia	ble	is	giv	en by	/		
		$\int x for$	0 < x < 1	l												
		$f(x) = \begin{cases} 2-x & \text{for} \end{cases}$	$\cdot 1 \le x < 1$	2,fir	nd the	e proba	bilities	that	a rar	ndom	n vari	able	having)		
		0 els	ewhere													
		this probability de	nsity wi	ll tak	e on	a value)									
		(i) between 0.45						great	er tha	an 1.	.0			6M	2	L3
		. /		. /		OR	. /	-								
5.	a)	Given $P(A) = 0.3$) $P(R)$ -	= 0.67	P(A		= 0.12 f	ind								
0.)					<i>.</i>								-		-
		(i) $P(A \cup B)$ (ii) H	$(A \cap B)$) (III)	P(A	(1 B)(I	P(A)	∪В)						4M	2	L2

		Code	e: 20AC	241T	
	b)	In a bolt factory, machines A, B, C manufacture respectively 25%, 35% and 40% of the total. Of their output 5%, 4%, 2% are known to be defective bolts. A bolt is drawn at random from the product and is found to be defective. What is the probability that it was manufactured by machine A?	8M	2	L3
6.	a)	If a coin is tossed 12 times, find the probability of getting			
-	- /	(i) at least two heads, (ii) at most 3 heads,			
		(iii) between 5 to 8 heads and (iv) all heads.	6M	3	L3
	b)	The daily high temperature in a computer server room at the university can modeled by a normal distribution with mean 68.7 °F and standard deviation 1.2 °F. Find the probability that, on any given day, the high temperature will be (i) between 68.3 and 70.3 °F, (ii) greater than 71.5 °F. OR	6M	3	L3
7.	a)	Fit a Poisson distribution to the following data:			
		Number of deaths01234			
		Frequencies 122 60 15 2 1	6M	3	L3
	b)	Find the probabilities that a random variable having the standard normal distribution will take on a value (i) Between 0.87 and 1.28, (ii) between - 0.34 and 0.62,	01vi	5	20
		(iii) Greater than -0.65 and (iv) less than -0.43 and greater than 0.43.	6M	3	L3
		UNIT–IV			
8.	a)	Define the following;(I) Point estimation(ii) Interval estimation(iii) Unbiased estimator(iv) More efficient unbiased estimator(v) Null hypothesis and(vi) Alternative Hypothesis.	6M	4	L1
	b)	The breaking strength of ropes produced by a manufacturer have mean 1800N and variance 1000N. By a new technique in the manufacturing process, it is claimed that the breaking strength can be increased. To test this claim a sample of 50 ropes is tested and found that the mean breaking strength is 1850N. Can we support the claim at (i) 00.5 and (ii) 0.01, level of significance?	6M	4	L3
		OR	•	-	
9.	a)	Discuss about the possible errors that are being occurred in sampling.	4M	4	L3
	b)	A cigarette manufacturing firm claims that its brand A line of cigarettes outsells its brand B by 8%. If it is found that 42 out of a sample of 200 smokers prefer brand A and 18 out of another sample of 100 smokers prefer brand B,			
		test whether the 8% difference is a valid claim.	8M	4	L3
10		UNIT-V			
10.		To reduce the amount of recycled construction materials entering land fill, it is crushed for use in the base of roadways. Green engineering practices require			
		that their strength, resiliency modulus, be accessed. Measurements on 6			
		specimens of recycled materials from two different locations produced the data:			
		Location-I707632604652669674Location-II552554484630648610			
		Use the 0.05 level of significance to establish a difference in mean strength			
		for the materials from two locations. Also construct a 99% confidence interval			
		for the difference between means.	12M	5	L3
11.		OR Fit a Poisson distribution to the following data and test for goodness of fit at 0.05 level of significance.			
		x: 0 1 2 3 4 f: 419 352 154 56 19 *** End ***	12M	5	L3

	Ha	all Ticket Number :			
	Co	ode: 20A541T	R-	20	
		II B.Tech. II Semester Supplementry Examinations Dec 2022, Design and Analysis of Algorithms (Common to CSE and Al&DS)	/ Jan 2	023	
	Mo	ax. Marks: 70	Time:	3 Hou	rs
	No	 te: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two mark. 3. Answer ALL the questions in Part-A and Part-B <u>PART-A</u> (Compulsory question)			
1	. An	swer ALL the following short answer questions $(5 \times 2 = 10 \text{ M})$		СО	Blooms Level
a)	Writ	e the pseudo code for finding the factorial of given number.		CO1	L3
b)	Writ	e the differences between divide and conquer and greedy me	thod.	CO2	L2
c)	Stat	te the principle of optimality		CO3	L1
d)	Diff	erentiate between Backtracking and Branch & Bound technique	les.	CO4	L2
e)	Def	ine class P and class NP.		CO5	L1
		PART-B		• 、	
		Answer <i>five</i> questions by choosing one question from each unit (5 x 12 =			Blooms
			Marks	CO	Level
_		UNIT-I			
2.	a)	What is Amortized analysis of algorithms and how is it different from Asymptotic analysis?	6M	001	
	b)	different from Asymptotic analysis? Describe the characteristics of algorithm with an example.		CO1	L2
	b)	OR	OIVI	CO1	L2
3.	a)	What is space complexity? Illustrate with an example for			
0.	u)	fixed and variable part in space complexity?	6M	CO1	L1,2
	b)	Describe find and union operation on sets		CO1	L2
	,				
4.	a)	Write Divide – And – Conquer recursive Merge sort			
		algorithm and derive the time complexity of this algorithm	8M	CO2	L2
	b)	Explain the general principle of Greedy method and also list the applications of Greedy method OR	4M	CO2	L1
5.	اد	Describe the Algorithm Analysis of Binary Search	<u> / N /</u>	CO2	10
J.	a) b)	What is a Spanning tree? Explain Prim's Minimum cost	4111	CO2	L2
	U)	spanning tree algorithm with suitable example.	8M	CO2	L3
			r		f a

Page **1** of **2**

		UNIT–III			
6.	a)	Describe the algorithm to find minimum-cost binary search tree. Show that the computing time of function			
		OBST is O (n^2).	6M	CO3	L2
	b)	Explain how travelling sales person problem uses the dynamic programming technique with example.	6M	CO3	L3
		OR			
7.	a)	Describe the Dynamic 0/1 Knapsack Problem. Find an optimal solution for the dynamic programming 0/1 knapsack instance for n=3, m=6, profits are (p1, p2, p3) = $(1,2,5)$, weights are (w1,w2,w3)= $(2,3,4)$.	6M	CO3	L4
	b)	Describe All-pairs shortest path algorithm with example.	OW	005	64
	0)	Give the time complexity of the algorithm.	6M	CO3	L3
8.	a)	Write a backtracking algorithm to solve sum of subsets problem with m=35, w= $\{20, 18, 15, 12, 10, 7, 5\}$ to the variable tuple size formulation	1014	004	
		variable tuple size formulation. OR	12M	CO4	L4
9.	a)				
01	ς,	for the 0/1 Knapsack instance: n = 5, (p1,p2,,p5) =			
		(10,15,6,8,4), $(w1,w2,,w5) = (4,6,3,4,2)$ and m=12. Find	101/	004	
		an optimal solution using fixed – tuple sized approach.	12M	CO4	L4
10.	a)	Distinguish between deterministic and non deterministic			
10.	u)	algorithm.	6M	CO5	L2
	b)	Explain the non-deterministic sorting problem.	6M	CO5	L2
		OR			
11.	a)	Explain the classes of NP-hard and NP-complete.	6M	CO5	L2
	b)	State the cook's theorem. What is the significance of the			
		theorem?	6M	CO5	L2
		*** End ***			

	Ha	all Ticket Number :											[7
	Со	de: 20A445T	II						_]]]		R-20)	
		II B.Tech. II Seme	ester Su	pple	eme	ntar	ry Ex	ami	inati	ions	Dec	2022	/ Jan 202	23	
			Mic	-							ng				
	140	ax. Marks: 70	(Com	Imol	n to	CSE	and	Al&	DS)			Time: 3	Lour	6
	IVIC	IX. MUIKS. 70				****	****	*					nne. s		5
	Not	te: 1. Question Pape 2. In Part-A, each	h questio	on cai	ries	Two	ma	r k.		Part-	B)				
		3. Answer ALL t	the ques	tions	in P				rt-B						
				(a		RT-A	-)						
						-	ory q			<i>.</i> _				Blo	oms
	1.	Answer ALL the fo	ollowing	g sho	rt an	ISWe	r que	estio	ns	(5	X 2 =	= 10M)) CO		vel
8	a) Ic	lentify the function of	BIU in 8	8086 r	nicro	proce	essor						CO1	L	.1
t) D	ifferentiate I/O mappe	ed and N	lemor	у Ма	pped	I I/O.						CO2	L	.2
(c) D	iscuss interrupt driver	n I/O.										CO3	L	.2
C	d) D	escribe asynchronous	s commu	unicati	ion.								CO4	L	.2
e	e) D	efine segmentation in	າ 80386.										CO5	L	.1
						PA	RT-E	3							
		Answer <i>five</i> question	ons by c	hoosi	ng o	ne qu	iestio	on fro	om ea	ach u	nit (5	5 x 12 =)	Blooms
													Marks	CO	Level
•						IT-I									
2.		Determine the signi			C	onal a DR	and c	ontro	ol flag	gs in	detail		12M		L3
3.	a)	List the classificatio) 10	` :				2M	CO1	L1
	b)	Discuss the instruct	,	ADC	UN	ii) IDI I T–II		iii)JC		v) LC	OP	v) SA		CO1	L2
4.	a)	Differentiate SRAM					•	cesso	or.				4M	CO2	L2
	b)	Draw and explain th			C	DR							8M	CO2	L2
5.		Explain the Archited	cture of a	8257		neat T–III	Ŭ	ram.					12M	CO2	L2
6.		Analyze the purpos	e of diffe	erent	•	ratior)R	nal M	odes	s of 8	255 I	PPI.		12M	C03	L4
7.		Summarize the inte of interrupt vector ta	•		in thi		ocess	•	cess	or ar	nd giv	ve the i	oll 12M	CO3	L5
8.		Analyze 8253 mode	e of oper	ration	s an			facin	g wit	h 808	36.		12M	CO4	L4
9.		Develop assembly each 7bit , even par	•	• •	ogra bits	ims t				•		bytes	of 12M	CO4	L6
10.	a)	Determine Real and	d protect	ted m)386						6M	CO5	L3
	b)	Describe Paging co	•			DR							6M	CO5	L2
11.		Discuss different fe	atures o	f Pen	tium	and	Pent End *	•	oro p	roces	ssors		12M	CO5	L2

	1	2. In Part-A, each question carries Two mark.									
		3. Answer ALL the questions in Part-A and Part-B									
	<u>PART-A</u> (Compulsory question)										
	(Compulsory question)										
1.	Aı	nswer ALL the following short answer questions $(5 \times 2 = 10M)$	СО	Bloom Leve							
a)	Wł	nat is kernel in operating system and what are the various types of kernel?	CO1		_1						
b)		hat are Burst time, Arrival time, Exit time, Response time, Turnaround time, and									
、		roughput of a process?	CO1	L1							
		nat is a thread in OS? What are the differences between a process and a thread?	CO2	L1, L							
d)		nat is deadlock and what are its four necessary conditions? nat are the various file allocation methods?	CO3	L1, L							
e)	vvi		CO4	L1, L	.2						
		PART-B A new on fine questions by choosing one question from each unit ($5 \times 12 - 60$ Me	ndra)								
		Answer <i>five</i> questions by choosing one question from each unit ($5 \times 12 = 60$ Max	Marks	со	BL						
		UNIT–I	Marko	00	DL						
2.	a)	Describe some of the challenges of designing operating systems for mobile devices									
		compared with designing operating systems for traditional PCs.	6M	CO1	L1						
	b)	Discuss the services provided by the operating system for efficient system operation.	6M	CO1	L1						
•	,	OR									
3.	a)	Describe the actions taken by a kernel to context-switch between processes.	5M	CO1	L1						
	b)	Suppose that the following processes arrive for execution at the times indicated. Each process will run for the amount of time listed. In answering the questions, use nonpreemptive scheduling, and base all decisions on the information you have at the time the decision must be made.									
		Process Arrival Time Burst Time									
		P1 0 8									
		P2 3 4 P3 4 2									
		i) What is the average turnaround time and average waiting time for these processes									
		with the FCFS scheduling algorithm?									
		ii) What is the average turnaround time and average waiting time for these processes with the SJF scheduling algorithm?	7M	CO1	L6						
		UNIT–II									
4.	a)	What resources are used when a thread is created? How do they differ from those used when a process is created?	5M	CO2	L4						
	b)	Imagine that there is rail bridge on the river for movement of trains from one side of the river to other side of the river. On the bridge only one train can move at a time. Train comes from both the sides. Assume that trains from two side of the river arrived at the bridge ends and waiting for the signal. Here only one train can be signalled at a time to avoid the collision on the bridge. Implement the above problem using Semaphered	714	000	16						
		Semaphores.	7 IVI	CO2	L6						
	Page 1 of 2										

Hall Ticket Number :											
----------------------	--	--	--	--	--	--	--	--	--	--	--

Code: 20A543T

Max. Marks: 70

II B.Tech. II Semester Supplmentary Examinations Dec 2022 / Jan 2023

Operating Systems

(Common to CSE and AI&DS)

Time: 3 Hours

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

R-20

6M CO2

6M CO3

L1

L6

L4

- 5. a) Write about thread issues in-detail.
 - b) Develop a pseudo code for a chess game using peterson's solution of process synchronization. 6M CO2

UNIT-III

- 6. a) What are the various possibilities to prevent the deadlock? Explain.
 - b) Assume four persons (P1, P2, P3, P4) are sharing the following set of common resources.

i) 5 Pens ii) 3 Pencils iii) 4 Erasers iv) 2 Sharpeners

Allocation matrix and Need matrix are given as follows:

Allocation Matrix:

Person Name	Pens	Pencils	Erasers	Sharpeners
P1	2	1	1	0
P2	0	0	0	1
P3	1	1	1	0
P4	1	1	0	1

Need Matrix:

Person Name	Pens	Pencils	Erasers	Sharpeners
P1	1	0	0	1
P2	0	2	1	1
P3	2	0	0	1
P4	0	0	1	0

Find out a proper order for completing the four persons work using Banker's algorithm

		algorithm.	6M	CO3	L4
		OR			
7.	a)	Explain about first fit, best fit, and worst fit memory allocation strategies with a suitable example.	6M	CO3	L5
	b)	How memory is protected with the use of hardware support? Explain with a neat diagram.	6M	CO3	L4, L5
		UNIT–IV			
8.	a)	Write a short note on directory structure.	6M	CO4	L1
	b)	Consider a system that supports the strategies of contiguous, linked, and indexed allocation. What criteria should be used in deciding which strategy is best utilized for a particular file?	6M	CO4	L1
		OR			
9.	a)	With a neat sketch explain the working of hard disk drive.	6M	CO4	L5
	b)	With a suitable example explain the working of FCFS and SSTF disk scheduling algorithms.	6M	CO4	L4, L5
10.	a)	Write a short note on goals of protection.	5M	CO5	L1
	b)	Explain about revocation of access rights.	7M	CO5	L5
		OR			
11.	a)	Write about various forms of accidental and malicious security violations.	5M	CO5	L1
	b)	Explain about system and network threats.	7M	CO5	L5
		and - I and			

*** End ***