Hall Ticket Number : R-20
Code: 20DF21T R-20M.C.A. II Semester Supplementary Examinations Jan/Feb 2024
Operating Systems
Max. Marks: 60 Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 12=60$ Marks)
Marks CO BL
UNIT-I
6M CO1 2

1. a) What is an operating system? List and explain the functions of it.6M CO11
OR
2. Give brief description about the different types of system calls.12M CO11
UNIT-II3. a) Distinguish between preemptive and non-preemptive scheduling.6 M CO 22
b) Write short notes on round robin scheduling algorithm. 6 M CO 2 2
OR
3. Present a solution to the dinning-philosopher using monitors.12M CO23
UNIT-III5. What is a deadlock? When it arises? How can we avoid deadlocks?Explain.

OR

6. Is it possible to have a deadlock involving only a single process? Explain your answer. 12M CO3 3
UNIT-IV7. a) Explain the difference between internal and external fragmentation6 M CO4 2b) Why are segmentation and paging sometimes combined into onescheme?
6 M CO 4 1
OR
7. a) What are the advantages and disadvantages of providing mandatorylocks instead of advisory locks$6 \mathrm{M} \mathrm{CO4}$5
b) Explain the purpose of the open () and close () operations. 6 M CO 4 2
UNIT-V9. Discuss the strengths and weaknesses of implementing an accessmatrix using access lists that are associated with objects.12M CO52
OR
8. Explain the role of protection goals and principles in system security. 12M CO5 3***All the Best ${ }^{* * *}$

Hall Ticket Number : \square

Code: 20DF24T

R-20

M.C.A. II Semester Supplementary Examinations Jan/Feb 2024

Computer Networks

Max. Marks: 60
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 12=60$ Marks)

UNIT-I

12M CO1

OR

2. Describe the working mechanism of packet switching and circuit switching with proper diagrams.

12M CO1 L1

UNIT-II

3. Summarize the Carrier Sense Multiple Access Protocols with available persistence methods with suitable diagrams.

OR

4. Discuss the applications of cyclic redundancy check (CRC) with a suitable example.

$$
12 \mathrm{M} \mathrm{CO} 2 \mathrm{~L} 2
$$

UNIT-III

5. The network is shown in the figure below, uses a Link State Routing protocol. Calculate a Shortest Path Tree for node A, using Dijkstra's algorithm.

OR
6. Illustrate the tunneling in computer networks with proper diagrams.
$12 \mathrm{M} \mathrm{CO} ~ \mathrm{~L} 3$

UNIT-IV

7. Summarize the components of Transmission Control Protocol (TCP) header. Explain the significance of each component in detail with TCP header format.

OR

8. Justify the need and working mechanism of Domain Name System (DNS).

12M CO4

UNIT-V

9. Analyze the process of encryption and decryption in Advanced Encryption Standard (AES) with an example.

12M CO5 L4

OR

10. Infer Asymmetric Encryption: Justify, Why Your Security Depends on It.

12M CO5 L4

[^0]M.C.A. Il Semester Supplementary Examinations Jan/Feb 2024

Design and Analysis of Algorithms

Max. Marks: 60
Answer all five units by choosing one question from each unit ($5 \times 12=60$ Marks)

UNIT-I

1. a) Discuss the various asymptotic notations used for time complexity using a neat diagram.
b) Write the differences between debugging and profiling.

4M 1 | 1 |
| :--- | :--- | :--- |

OR

2. a) Analyze the recursive program for the tower of Hanoi problem.
 $T(1)=\theta(1)$ is asymptotically bounid by $\theta(n)$.

UNIT-II

3. a) Explain in detail the Quick sorting method and its time complexity.
b) Find the location of 45 in the given array by applying the Binary search algorithm. $A=(9,12,15,24,30,36,45,70)$

OR

4. a) Illustrate the operation of merge sort on the following array. $A=\langle 3,1,4,1,5,9,2,6,5,3,5,8,9\rangle$

6M 23
b) What is a stable sorting method? Is Quicksort a stable sorting method? Justify it.

6M 22

UNIT-III

5. a) Solve the following $0 / 1$ Knapsack problem using dynamic programming Let $n=3, p=\{1,2,5), w=(2,3,4)$ and $m=6$.

6M 33
b) Find the minimum cost path from s to t in the multistage graph of the five stages shown in the following figure using the forward approach.

OR

6. a) Find the all-pair shortest path problem for the following graph using the Floyd-Warshall algorithm.

b) Discuss the design steps in Kruskal's algorithm to construct a minimum spanning tree with the following graph.

UNIT-IV

7. a) Draw and explain the state space tree for the 4-queens problem that is generated during backtracking.

8M $4 \quad 3$
b) What are the searching techniques that are commonly used in the Branch-and-Bound method?
$4 \mathrm{M} \quad 4 \quad 2$
OR
8. a) Draw the portion of the state space tree generated by LCBB for the $0 / 1$ Knapsack for instance $n=5$,
(p1,p2,p3,p4,p5)=(10,15,6,8,4),
($w 1, w 2, w 3, w 4, w 5$) $=(4,6,3,4,2)$ and $m=12 . \quad 10 \mathrm{M} \quad 3 \quad 3$
b) Define the sum of the subset Problem.

2M 3
UNIT-V
9. a) Explain the classes of NP-Hard and NP-Complete.

6M $3 \quad 2$
b) Discuss the Clique's decision problems.
$6 \mathrm{M} \quad 5 \quad 2$ OR
10. a) State and prove Cook's theorem. 10M $\quad 5 \quad 3$
b) Define the P class of problem.

[^0]: ***END***

