Hall Ticket Number :										
----------------------	--	--	--	--	--	--	--	--	--	--

Code : 1G644

R-11/R-13

II B.Tech. II Semester Supplementary Examinations Nov/Dec 2016

Building Planning and Drawing (Civil Engineering)

Max. Marks: 70

Time: 03 Hours

PART-A

(Answer any THREE questions 3 X 14= 42 Marks)

- 1. Write a short notes on the following : detached house, setback, building line , floor area ratio
- 2. a) Explain how you will select a site for the construction of a residential building.
 - b) Explain the characteristics of the directions briefly
- 3. List out and detail the facilities to be provided in the layout of a bank
- 4. What are the stages of a construction project and construction management team explain by using flow charts?
- 5. a) Differentiate clearly between PERT and CPM network methods
 - b) What are the features of network planning? Why do we use network planning? Explain in detail

PART-B

(Answer any **ONE** question on drawing sheet 1 x 28 = 28 Marks)

- 6. a) Draw the conventional signs of(i) Ventilator. (ii) Timber. (iii) Ground level. (iv) Wash basin.
 - b) Draw the front elevation and sectional plan of a half glazed paneled door with swing ventilator to fit in an opening of 1200 mmx2100 mm and label the parts
- 7. Draw the plan section and elevation of hotel building with the help of the data given below to a scale of 1:50.
 - i. Entrance foyer-1.
 - ii. Reception room-1.
 - iii. Public rooms-1.
 - iv. Bed rooms with bath cum W.C-14.
 - v. Kitchen-1.
 - vi. Sanitary units-1.
 - vii. Laundary-1.
 - viii. Store room-1.
 - ix. Open to sky

Iall Tick	et Number :	
ode : 1	GC43 R-11	/R-13
II B.	Tech. II Semester Supplementary Examinations Nov/Dec 2016	5
	Environmental Science (Common to CE, ME and CSE)	
Max.	Marks: 70 Time: 03 Ho	urs
	Answer any five questions All Questions carry equal marks (14 Marks each)	
1. a)	Define environment? Explain the branches of Environmental education.	7M
b)	What is a Biosphere? Discuss its significance.	7M
2.	Write a brief note on.	
	a) a) Floods.	7M
	b) b) Use of alternate energy resources.	7M
3. a)	What are the environmental hazards associated with mineral extraction.	7M
b)	Discuss, we live in a world where in natural resources are limited?	7M
4. a)	Discuss the effects and control measures of marine pollution.	7M
b)	Write a brief account of solid waste management.	7M
5.	Discuss the structure and functions of forest ecosystem.	14M
6. a)	List the main biogeographic zones in India.	8M
b)	What is biodiversity? Write a note on poaching of wild life.	6M
7. a)	What are the causes effects and control measures of Global warming?	8M
b)	Write a short note on waste land reclamation.	6M
8. a)	Explain the necessity of value education.	7M
b)	What is the role of information technology (IT) in environment and human health?	7M

Hall	Tick	ket Number :															
Cod	le : '	IG642					1	1	1	J]				R-11	/R-13
II B.Tech. II Semester Supplementary Examinations Nov/Dec 2016 Hydraulics and Hydraulic Machinery (Civil Engineering)								5									
/	Max	. Marks: 70			400	vor	2014	five	auo	rtion				Time	e: (03 Ho	urs
		All	Ques		Ansv ns co		equo		•			s ec	ho)			
1.	a)	Define phys momentum a	•									ept o	of	displ	lace	ement	, 7M
	b)	Discuss the p	henoi	men	non o	f sep	arati	on in	a di	vergi	ng flo	ow.					7M
2.	a)	Show that at o	critica	al de	pth f	or mi	nimu	ım sp	ecifi	c ene	ergy	$\frac{Q^2}{g} =$	$=\frac{Aa}{7}$	$\frac{c^3}{r}$			7M
	b)	A rectangular depth and crit							a flov	v of :	54m [:]	³ /sec.	. F	ind th	he	critica	l 7M
3.	a)	Classify the h	ydrau	ulic j	ump	on th	ne ba	sis o	f Fro	nde':	s nur	nber.	-				7M
	b)	Water is a 10M wide rectangular channel experiences a jump in depth from 2M to 6M. Find the Fronde's numbers on either side of jump.								n 7M							
4.		A jet of water strikes a symmetrically curved concave vane and gets deflected through 120° when stationary. If the water jet is moving at 15m/sec. and the vane is moving at 6m/sec. Find the angle of the jet at inlet and outlet. Also find the absolute velocity of the jet at outlet in magnitude and direction and work done on the vane per second. What is the hydraulic efficiency of a system? Take diameter of the jet as 80mm.							9 9 1								
5.	a)	Differentiate b	betwe	en (i) axi	al flo	w ar	nd rad	dial f	low t	urbin	es					
		(ii) inward and	d outv	warc	d flow	' turb	ines	(iii)	Kapl	an a	nd P	ropel	ler	turbin	ne.		7M
	b)	Design a pel efficiency 85° 500kW, speed	%, cc	oeffi	cient	of v	/eloc	ity 0									
6.		A 1:10 scale running at 120 operating poin discharge spe similar to the p	0 rpm nt is 9 eed ar	unc 0%. nd p	der a The ower	net l mo outp	nead del is ut of	of 12 test the	2M. ed ui mode	The nder el. If	overa a he it ru	all eff ad of ns ur	icie 4N nder	ncy a 1. Fir the o	nt th nd a	ne bes out the	t Ə
7.	a)	What do you overall efficier			•				ficier	ncy,	mecl	nanic	al	efficie	enc	y and	d 7M
	b)	How will you c	obtain	exp	ressi	on fo	r min	imun	n spe	ed fo	r sta	rting a	a ce	entrifu	ıgal	pump	7M
8.	a)	How do we m	ake a	a cho	oice o	of loc	atior	n of h	ydro	plan	t?						7M
	b)	Discuss meth	ods o	of es	timat	ing l	•	erm : **	and s	short	term	l dem	nan	ds.			7M

Hall Ti Code:	Cket Number : R-11/R-	13
	B.Tech. II Semester Supplementary Examinations Nov/Dec 2016	
	Mathematics – III	
Max A	(Common to EEE & ECE) arks: 70 Time: 3 H	
14102.14	Answer any five questions	OUIS
	All Questions carry equal Marks (14 Marks each)	
1. a	Evaluate $\int_{0}^{f/2} \sqrt{\tan u} d_u$.	7M
	0	71VI 7M
	Prove that $S(m,1/2) = 2^{2m-1}S(m,m)$.	7 111
Z. a	Prove that the function $f(z)$ defined by $x^{3}(1+i) - y^{3}(1-i)$	
	$f(z) = \frac{x^3(1+i) - y^3(1-i)}{x^2 + y^2} \ (z \neq 0), \ f(0) = 0$	
	is continous at the Cauchy's Riemann equations are satisfied at the at the origin, $yet = f_{r(0)} does not exist$ Find the apply a function where real part is $\frac{\sin 2x}{2}$	7M
b	Find the analytic function, whose real part is $\frac{\sin 2x}{(\cosh 2y - \cos 2x)}$	7M
3 a		
	$\frac{x^2}{\cosh^2 u} + \frac{y^2}{\sinh^2 u} = 1 \text{ and } \frac{x^2}{\cos^2 v} - \frac{y^2}{\sin^2 v} = 1.$	7M
h	$\cosh^2 u + \sinh^2 u = \cos^2 v + \sin^2 v$ Find all the roots of the equation $\tanh z+2=0$.	7M
	State and prove Cauchy's integral formula.	7M
		7 1 1 1
b	$\int_{c} (z - f/6)^3$	7M
5. a	Find the Taylor's expansion of $f(z) = \frac{1}{(z+1)^2}$ about the point z=-i.	7M
b	Expand $f(z) = \frac{1}{(z-1)(z-2)}$ in the regions (i) $ z < 1$, (ii) $1 < z < 2$.	7M
6. a	Using Residue theorem, evaluate $\int_{c} \tan z dz$ where c is the circle $ z = 2$.	7M
b	By Integrating around a unit circle, evaluate $\int_{0}^{2f} \frac{\cos 3_{\#}}{5 - 4\cos _{\#}} d_{\#}$.	7M
7. a	State and prove Rouche's theorem.	7M
b	Prove that the polynomial $z^5 + z^3 + 2z + 3$ has just one zero in the first quadrant of the complex plane.	7M
8. a	Find the image of the infinite strip $0 < y < \frac{1}{2}$ under the transformation	
	$w = \frac{1}{z}$.	7M
b	Find the Bilinear transformation which maps the points (,i,0) in the z- plane into (-1,-i,1) in the w-plane. ***	7M

|--|

Code : 1G643

R-11/R-13

II B.Tech. II Semester Supplementary Examinations Nov/Dec 2016 STRUCTURAL ANALYSIS-I

IRUCIURAL ANALYSIS-

Max. Marks: 70

(Civil Engineering)

Time: 03 Hours

Answer any **five** questions All Questions carry equal marks (14 Marks each)

1 A beam AB is simply supported over a span 6m in length. A concentrated load of 45kN is acting at a section 2m from support. Calculate the deflection under

the load point. Take E = 200×10^6 kN/m². And I = 13×10^{-6} m⁴

14M

2. Draw the bending moment diagram and shear force diagram for the continuous beam shown in figure below using theorem of three moments method. EI is constant.

3. Using slope deflection method, determine slope at B and C for the beam shown in figure below. EI is constant. Draw free body diagram of BC.

4. Draw the bending moment diagram and shear force diagram for the continuous beam shown in figure below using moment distribution method. El is constant.

5. Determine the vertical displacement of joint C of the steel truss shown in figure below. The cross sectional area of each member is $A = 400 \text{mm}^2$ and E = 200 GPa.

- Two concentrated rolling loads of 12 kN and 6 kN placed 4.5 m apart, travel along a freely supported girder of 16m span. Draw the diagrams for maximum positive shear force, maximum negative shear force and maximum bending moment.
- 7. Derive the influence diagram for reactions and bending moment at any section of a simply supported beam. Using the ILD, determine the support reactions and find bending moment at 2m, 4m and 6m for a simply supported beam of span 8m subjected to three point loads of 10kN, 15kN and 5kN placed at 1m, 4.5m and 6.5m respectively.
- 8. a) Differentiate the perfect frame from deficient frame with an example?
 - b) Differentiate: determinate and indeterminate structures?
 - c) Define degree of freedom and what do you understand by internal hinge in the structure
 14M

14M

14M

Hall Tic	ket Number :							
Code :	1G641 R-11/	′R-13						
II B.Tech. II Semester Supplementary Examinations Nov/Dec 2016								
Strength of Materials-II								
	(Civil Engineering)							
Max	k. Marks: 70 Time: 03 Hou	rs						
	Answer any five questions All Questions carry equal marks (14 Marks each) ********							
1.	Derive an expression for change in dimensions of a thin cylindrical shell due to							
	internal pressure.	14M						
2.	A steel plug 120mm in diameter is forced into a steel ring of 180mm external							
	diameter and 75mm wide. The strain in the circumferential direction was							
	measured as 0.700×10^{-4} . If μ between the contact surfaces is 0.3 and E= 200 $\times 10^{-2}$ a should be available to a single former sequence the short set of the single	4 41 4						
	GN/m ² , calculate the axial force required to push the plug out of the ring.	14M						
3. a)	What are the assumptions made in the theory of pure torsion?	7M						
b)	Derive the basic torsion equation $T/J = fs/R = c^{\theta}/I$.	7M						
,								
4.	A weight of 200N is dropped on to a helical spring made of 15 mm wire,							
	closely coiled to a mean diameter of 150mm with 22 coils. Determine the							
	height of drop if the instantaneous compression is 68 mm. C= 84 GN/m ² .	14M						
5.	Compare the crippling loads given by Rankine's and Euler's formulae for a							
	tabular strut 3m long with outer and inner diameters of 40mm & 35mm loaded							
	through pin joints at both ends. Take yield stress as 350 MN/m^2 , = $1/7500 \text{ \&}$ E= 200 GN/m ² .	14M						
		17171						
0	A belleve singular cast increasion of QCare, suternal dispector and Qare thislences							

- A hollow circular cast iron column of 25cm external diameter and 2cm thickness carries a load of 100 KN in the vertical plane at an eccentricity of 8cm. Determine the maximum and minimum stresses developed in the material.
- 7. a) Explain the term unsymmetrical bending.
 b) A beam of rectangular section 100mm wide and 120mm deep is subjected to a maximum BM of 16KNm. Locate the nutral axis of the section & calculate the maximum bending stress induced in the section.
 5M
- A ring beam of circular shape has a radius of 4m and is supported on 8 equally spaced supports. The beam carries a udl of 3.6 KN/m inclusive of its own self weight. Determine the bending moment & shear force at salient points & plot their variation.