Iall Tick	et Number :	
ode : 1	GC43 R-11	/R-13
II B.	Tech. II Semester Supplementary Examinations Nov/Dec 2016	5
	Environmental Science (Common to CE, ME and CSE)	
Max.	Marks: 70 Time: 03 Ho	urs
	Answer any five questions All Questions carry equal marks (14 Marks each)	
1. a)	Define environment? Explain the branches of Environmental education.	7M
b)	What is a Biosphere? Discuss its significance.	7M
2.	Write a brief note on.	
	a) a) Floods.	7M
	b) b) Use of alternate energy resources.	7M
3. a)	What are the environmental hazards associated with mineral extraction.	7M
b)	Discuss, we live in a world where in natural resources are limited?	7M
4. a)	Discuss the effects and control measures of marine pollution.	7M
b)	Write a brief account of solid waste management.	7M
5.	Discuss the structure and functions of forest ecosystem.	14M
6. a)	List the main biogeographic zones in India.	8M
b)	What is biodiversity? Write a note on poaching of wild life.	6M
7. a)	What are the causes effects and control measures of Global warming?	8M
b)	Write a short note on waste land reclamation.	6M
8. a)	Explain the necessity of value education.	7M
b)	What is the role of information technology (IT) in environment and human health?	7M

											1	1				
Hall Tick	et Number :								<u> </u>							D 10
Code : 1				_				_								R-13
II B	.Tech. II Ser			• •									v/De	ec 2	2016	
	FI	uid	ме						l IC I ring ,		nin	es				
Max.	Marks: 70			1	0.10.		9			/			Time	e: 03	Ηου	rs
	A 11	0		Ansv				•				noh	۱			
	All	Que	SHO	IS CC	шуе	-	۱۱۱۱ الر *****	JIKS	(147	VICIN	s ec	lch)			
1.	Define the fo		•	•	•											
	Density, weig	ght D	ensit	:y, Sp	pecifi	c Vo	lume	and	Spe	cific	Grav	ity				14M
2.	State and pro	ove F	Rorna	ulli'e		ation	and	stat	o the	255	umni	tion	s mar	de foi	r tha	
۷.	same?			Julii S	i cqu	anor		5121		, 433	ump		5 11140			14M
3.	Two reservoi						-		-		-					
	2D, 3D resp same for all															
	the smallest							-	neug					90 P.I	PO	14M
4.	A jet of water moving at 15 m/sec impinges on a symmetrical concave vane shaped to deflect the jet through 140 ⁰ . if the vane is moving at 6 m/sec find the															
	angle of the j		-		•						•					
	of exit in mag	nitud	e & c	lirecti	ion a	nd th	e wo	rk do	ne pe	ər un	it wei	ight	of wa	ter.	-	14M
5.	Explain the fo	allow	ina t	orme												
Э.	a. Catch		•													
	b. Runof															
	c. Mass															4 4 1 4
	d. Pump	ed st	orag	e sys	stem											14M
6.	Give the ba	asic (Clas	sifica	tion	of h	nydra	ulic	turbi	ines	and	sta	ate th	ne m	najor	
	differences a						,									14M
7 - `	Eveloi: (h			6 a :		f	- h	un el	- 4. · ···	· ·	:41-		bla -"			
7a)	Explain the ne		•	•		•	•							•		6M
b)	A turbine development of the specific	•											•			
	head of 19.5	•	•													8M
			_						_	_		_		_	-	
8	A single actir length of 250	•	•		• •	•	•									
	and delivery l			•						•						
	pump in liters	•				•				•			•			
	and delivery					-					•			and	10%	1 <i>4</i> M

respectively and also find the power required to operate the pump

14M

Hall Ticket Number :											
----------------------	--	--	--	--	--	--	--	--	--	--	--

Code : 1G541

II B.Tech. II Semester Supplementary Examinations Nov/Dec 2016 KINEMATICS OF MACHINERY

(Mechanical Engineering)

Time: 03 Hours

R-11/R-13

Max. Marks: 70

Answer any **five** questions All Questions carry equal marks (14 Marks each)

- 1. What is an inversion? Explain any two inversions of single slider crank chain.
- 2. a) Name the mathematically correct straight line mechanisms.
 - b) With a neat sketch explain Ackermann steering mechanism.
- In a slider crank mechanism, the crank OB is 30 mm and the connecting rod BC is 120 mm long. The crank rotates at 300 rpm clockwise and makes 600 from IDC. Find i) the velocity of piston C and angular velocity of connecting rod BC.
- 4. In a four bar mechanism PQRS, PS is fixed link of length 120 mm. Crank PQ is 45 mm rotates at 200 rpm and an angular acceleration of 150 rad / sec2 at an instant when crank makes an angle 45 0 to the horizontal. Both are clockwise in nature. The link QR is 90 mm and link RS is 60 mm. Find the acceleration of points Q and R.
- 5. A cam with 40 mm minimum radius is rotating clockwise at uniform speed of 1200 rpm. It has to operate a knife edge follower as defined below:
 - i) Follower has to move outward through 30 mm during 900 of cam rotation with uniform velocity
 - ii) Dwell for the next 30 0
 - iii) Follower is to return to its starting position with SHM during next 1200.
 - iv) Follower is to dwell for the remaining period.

Draw the cam profile taking the line of action of the follower passing through the center of the cam. Determine the maximum velocity and acceleration of the follower during the return stroke.

- 6. Two wheels 24 teeth and 30 teeth and standard addendum equals to one module mesh together. Module is 3 mm. Pressure angle is 200. Find the length of path of contact, arc of contact and no of pairs of teeth in contact.
- 7. An open flat belt drive is required to transmit 9 kW of power from a motor running at 900 rpm to another pulley to rotate at 300 rpm. The belt is 12 mm thick and has an allowable stress as 2.5 N / mm2. The two shafts are 1.2 m apart. The diameter of the smaller pulley is 180 mm. Belt weighs 1 kg / m length. Coefficient of friction is 0.3. Find the width of the belt.
- 8. An epicyclic gear train consists of an arm 'a' and two gears P and S having 30 teeth and 50 teeth respectively. The arm rotates about the centre of the gear S at a speed of 120 rpm clockwise. Determine the speed of gear P for the following conditions:

i) If gear S is fixed and

ii) the gear S rotates at 180 rpm counterclockwise instead of being fixed.

Hall Ti Code:	Cket Number : R-11/R-	13
	B.Tech. II Semester Supplementary Examinations Nov/Dec 2016	
	Mathematics – III	
Max A	(Common to EEE & ECE) arks: 70 Time: 3 H	
14102.14	Answer any five questions	OUIS
	All Questions carry equal Marks (14 Marks each)	
1. a	Evaluate $\int_{0}^{f/2} \sqrt{\tan u} d_u$.	7M
	0	71VI 7M
	Prove that $S(m,1/2) = 2^{2m-1}S(m,m)$.	7 111
Z. a	Prove that the function $f(z)$ defined by $x^{3}(1+i) - y^{3}(1-i)$	
	$f(z) = \frac{x^3(1+i) - y^3(1-i)}{x^2 + y^2} \ (z \neq 0), \ f(0) = 0$	
	is continous at the Cauchy's Riemann equations are satisfied at the at the origin, $yet = f_{r(0)} does not exist$ Find the apply a function where real part is $\frac{\sin 2x}{2}$	7M
b	Find the analytic function, whose real part is $\frac{\sin 2x}{(\cosh 2y - \cos 2x)}$	7M
3 a		
	$\frac{x^2}{\cosh^2 u} + \frac{y^2}{\sinh^2 u} = 1 \text{ and } \frac{x^2}{\cos^2 v} - \frac{y^2}{\sin^2 v} = 1.$	7M
h	$\cosh^2 u + \sinh^2 u = \cos^2 v + \sin^2 v$ Find all the roots of the equation $\tanh z+2=0$.	7M
	State and prove Cauchy's integral formula.	7M
		7 1 1 1
b	$\int_{c} (z - f/6)^3$	7M
5. a	Find the Taylor's expansion of $f(z) = \frac{1}{(z+1)^2}$ about the point z=-i.	7M
b	Expand $f(z) = \frac{1}{(z-1)(z-2)}$ in the regions (i) $ z < 1$, (ii) $1 < z < 2$.	7M
6. a	Using Residue theorem, evaluate $\int_{c} \tan z dz$ where c is the circle $ z = 2$.	7M
b	By Integrating around a unit circle, evaluate $\int_{0}^{2f} \frac{\cos 3_{\#}}{5 - 4\cos _{\#}} d_{\#}$.	7M
7. a	State and prove Rouche's theorem.	7M
b	Prove that the polynomial $z^5 + z^3 + 2z + 3$ has just one zero in the first quadrant of the complex plane.	7M
8. a	Find the image of the infinite strip $0 < y < \frac{1}{2}$ under the transformation	
	$w = \frac{1}{z}$.	7M
b	Find the Bilinear transformation which maps the points (,i,0) in the z- plane into (-1,-i,1) in the w-plane. ***	7M

Hall Ticket Number :												
----------------------	--	--	--	--	--	--	--	--	--	--	--	--

Code : 1G544

II B.Tech. II Semester Supplementary Examinations Nov/Dec 2016

Manufacturing Technology

(Mechanical Engineering)

Max. Marks: 70

Time: 03 Hours

R-11/R-13

Answer any **five** questions All Questions carry equal marks (14 Marks each) Illustrate your answers with NEAT sketches wherever necessary ******

- 1. a) What are the different types of patterns used in Foundry practice? Describe with neat sketches, and mention the applications of each type.
- 8M
- **.**...

	b)	A particular sand	has produ	iced the f	ollowing r	esults on	Sieve an	alysis :	
		Sieve No.	70	100	140	200	270	Pan	
		Retained %	0.04	1.01.	45.21	48.02	5.38	0.36	
		Calculate the grain	n fineness	s number	•		L		6M
2.	a)	Describe the desig	gn conside	erations o	of sand ca	stings, w	ith releva	nt sketches	s. 8M
	b)	A certain mould have a rea at the base of leading into a mould (i) the velocity of the and (iii) the time to the time the time the time to the time the time the time to the t	f the spru Ild cavity he metal	e is 2.5 c whose vo at the ba	m². The s olume is 1	prue feec 560 cm ³ .	ls a horiz Determir	ontal runne ne :	r
3.	a)	What are the defe	cts that m	night arise	e in Forge	welding?	PExplain.		6M
	b)	Discuss the Trout problems.	leshootin	g methoo	ds for the	common	Electric	Arc Weldin	g 8M
4.	a)	Distinguish betwee principle of operation		•	•	•	•		
	b)	Describe any four	non – de	structive	testing me	ethods of	welds.		7M
5.	a)	How does 'Strain reduced by subse		-		-		e removed	/ 8M
	b)	Explain any six di	fferences	between	hot rolling	g and col	d rolling p	processes.	6M
6.	a)	Suppose a steel w 10 mm. Given the coefficient of frictio power required for	e flow stre n, describe	ess of the	e material edure to c	l, the sen alculate th	ni die ang ne draw st	gle, and th tress and th	е
	b)	Distinguish betweer	n Blanking	and Pierc	ing operati	ons. Sketo	ch the equ	ipment used	d. 6M
7.	a)	Explain the differ forging. Give the r			rop Forg	ing, Roll	forging,	and Rotar	y 8M
	b)	Distinguish betwee sketches, and me	•		•	rostatic e	xtrusion v	with relevar	nt 6M
8.	a)	In Abrasive jet ma of stand – off dis	• •			•			
	b)	Ultrasonic machin conditions) in Alur the drilled hole? J	ninium ar	nd Cast Ir	on. Which	•			•

de	• 17	G542 R-11/R-	-1:
ue		3.Tech. II Semester Supplementary Examinations Nov/Dec 2016	
		Thermal Engineering -I	
		(Mechanical Engineering)	
۸	۸ax	. Marks: 70 Time: 03 Hour	'S
		Answer any five questions All Questions carry equal marks (14 Marks each)	

1.	a)	с , , , , , , , , , , , , , , , , , , ,	
		clearance volume is 0.00263 m^3 . the initial pressure and temperature are 1 bar and 50° C. if the maximum pressure is limited to 25 bar, find the following:	
		i) The air standard efficiency of the cycle.	
		ii) The mean effective pressure of the cycle.	
		Assume the ideal conditions.	7
	b)	Derive expression for efficiency in the following cases:	
		i) Carnot cycle	
		ii) Diesel cycle	7
S	a)	iii) Dual combustion cycle	'
Ζ.	a)	Explain the construction and working principle of Battery coil ignition system with neat sketch	7
	b)	Discuss the construction and working principle of a four stroke engine with neat	
	,	sketch	7
3.	a)	Explain the phenomena of knocking in diesel engines. What are the different	
		factors which influence the knocking?	7
	b)	Discuss the difference between Normal/abnormal combustion and pre ignition	7
4.	a)	What are the variables affecting the "Delay Period"?	7
	b)	The flow rate through steam nozzle with isentropic flow from pressure of 13 bar was found to be 60 kg/min. steam is initially saturated. Determine the throat area.	
		If the flow is super saturated, determine the increase in the flow rate.	7
5.		Following data relate to 4 cylinder four stroke petrol engine. Air fuel ratio by	
		weight =16:1, calorific value of the fuel = 45200 kj/kg, mechanical efficiency =	
		82%, air standard efficiency = 52%, relative efficiency = 70%, volumetric efficiency = $\frac{78\%}{200}$ strate / bars ratio = 1.25 sugging and 25%	
		efficiency =78%, stroke/bore ratio =1.25, suction condition = 1 bar and 25° C, speed =2400 rpm and power at brakes =72 kW. Calculate the :	
		i) Compression ratio ii) Indicated thermal efficiency iii) Brake specific fuel	
		consumption and iv) Bore and stroke.	14
6.	a)	In the construction and working of Multi stage compressor and discuss the	
		perfect and imperfect inter cooling with neat sketch.	7
	b)	A single stage, single acting reciprocating air compressor has a bore of 0.2 m and stroke of 0.3 m. It receives air at 1 bar and 293 K and delivers it at 5.5 bar.	
		If the compression follows the law $pV^{1.3}$ = constant and clearance volume is 5%	
		of the stroke volume, Determine the mean effective pressure and the power	
		required to drive the compressor, if it runs at 500 rpm.	7
7.	a)	Explain the rotary screw compressor with a neat sketch	7
	b)	A rotary vane compressor compresses 4.5 m ³ of air per minute from 1 bar to 2	
		bar when running at 450 rpm. Find the power required to drive the compressor when i . The ports are so placed that there is no internal compression; and ii .	
		The ports are so placed that there is 50% increase in pressure due to	
		compression before the backflow occurs.	7
8.	a)	Explain the velocity diagrams for Axial flow compressor	7
	b)	An axial flow compressor, with compression ratio 4, draws air at 20°C delivers	
		it at 197° C. The mean blade speed and flow velocity are constant throughout	
		the compressor. Assuming 50% degree of reaction balding and taking blade velocity as 180 m/s. find the flow velocity and the number of stages. Take work	
		factor =0.82; =12°; =42° and C_p =1 kJ/kg. K.	7