	et Number :]			
Code : 10								<u> </u>]		R-11,	/R-13
	Tech. II Sen Electro	omagr	netic	Wa	ves	and	d Tro	ansi	niss	ion			2016	
Max.	Marks: 70	(Electro Question	Answ	er ai rry eo	ny fiv	/e q ma	luest	ions				ne: 0	3 Hou	Jrs
1. a) b)	Find the relat Given the por (i) Find th (ii) Calcu	tential V ne electr	= 10/ fic flux work	r² Sir dens don	n Co sity D e in	os , at (2 mov	2, /2	2, 0)				rom p	point	6M 8M
2. a) b)		n's and l citance.	, Laplac	e's e	quati	óns.		or ca	pacit	ance	e of a	sphe	rical	6M 8M
3. a) b)		plain Bio rrent dei	nsity k	. = 20) ax /	Amp	/mt f	lows	in Y	= 1	plane	. Finc	I the	7M 7M
4.	Derive and e	xplain tra	ansfor	mer a	and m	notio	onal e	emfs.						14M
5.	Derive the ex of a plane wa	•		•							uatior	n cons	stant	14M
6. a) b)	Define Poynt What is norm	0		•										6M 8M
7. a) b)	What is chara impedance a An open wire km, C = 0.0 Determine z	nd the p telepho 083 x 1	ropaga ne line 0 ⁻⁶ fara	ation e has ads p	cons R = ´ oer ki	tant. 10 ol	hms∣	per k	m, L	= 0.0)037 k	nenrys	s per	7M 7M
8. a) b)	Explain the c A line 10 km $z_0 = 600$ = 0.1 ne $\beta = 0.05$ ra Find the rece	onstruct long has 0 ⁰ eper /km ad/km	ion of s the fo	smith ollowi	n chai ng lir	ne co			i amı	peres	s are s	sent d	own	7M
	^β = 0.05 ra	ad/km ived cur	rent a		-) mill	i am	peres	s are s	sent d	own	

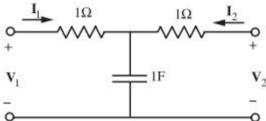
Hall Ticket Number :											
----------------------	--	--	--	--	--	--	--	--	--	--	--

Code : 1G246

II B.Tech. II Semester Supplementary Examinations Nov/Dec 2016

Electrical Technology

(Electronics & Communication Engineering)


Max. Marks: 70

Time: 03 Hours

R-11/R-13

Answer any five questions All Questions carry equal marks (14 Marks each)

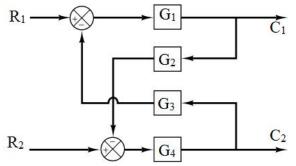
- 1. A series RLC circuit, with R = 3k, L = 10H and $C = 200\mu F$ has a constant voltage source applied at t=0. Obtain the transient current if the capacitor has no initial charge. Derive the necessary expressions. 14M
- 2. a) Express impedance parameters in terms of admittance parameters. 6M
 - b) Determine the transmission parameters in the s domain for the following two port network.

		oo	8M
3.	a)	What are the limitations of constant k filters?	4M
	b)	Design m derived-low pass filter to meet the following specifications. The filter is to be terminated in 500 resistance and it is to have a cutoff frequency of	
		1000 Hz with very high attenuation at 1065 Hz.	10M
4.	a)	What is an attenuator? Classify attenuators.	4M
	b)	Design a symmetrical-T and attenuators to provide an amount of attenuation 40dB and terminated by a nominal impedance of 600.	10M
5.	a)	Derive the e.m.f. equation of a dc generator when the windings are	
		i) lap wounded and ii) wave wounded	6M
	b)	A 50KW ,250V dc shunt generator has a field circuit resistance of 60 and an armature resistance of 0.02 .Calculate	
		i)the load current, field current and armature current	
		ii)the generated armature voltage when delivering full load current and half full load current	8M
6.	a)	Draw and explain very briefly the torque speed characteristics of shunt, series and compound motors	6M
	b)	A 500V shunt motor takes 5A on no-load. The resistances of armature and field circuits are 0.5 and 250 respectively. Calculate the efficiency of the machine when running i) as a motor taking 100A from a 500V supply and ii) as a generator delivering100Aat 500V.	8M
7	a)	Explain the principle of operation of a single phase transformer and draw the phasor diagram on load.	6M
	b)	A 50 kVA single phase transformer draws a primary current of 250A on full load .The total resistance referred to primary side is 0.006 .If the iron loss of the transformer is 200W,calculate the efficiency on full load and on half full load at 0.8 p.f.lagging.	8M
8.	a)	Explain the principle of operation and draw the characteristics shaded pole induction motor	7M
	b)	Explain briefly about Synchros	7M

Hall Ticket Number :										
----------------------	--	--	--	--	--	--	--	--	--	--

Code : 1G244

II B.Tech. II Semester Supplementary Examinations Nov/Dec 2016


Linear Control Systems

(Common to EEE & ECE)

Max. Marks: 70

0 Time: 03 Hours Answer any five questions All Questions carry equal marks (14 Marks each)

- 1. a) What are the various types of control systems? Give an example of each control system.
 - b) Define transfer function and list its properties.
- Figure below shows a system with two inputs and two outputs. Derive C₁(s)/R₁(s), C₁(s)/R₂(s), C₂(s)/R₁(s), and C₂(s)/R₂(s). In deriving outputs for R₁(s), assume that R₂(s) is zero and vice versa.

14M

7M

14M

8M

6M

- 3. a) Obtain the response of a first order system $\frac{C(s)}{R(s)} = \frac{1}{(1+Ts)}$ for unit step input.
 - b) Find the steady state error for unit step, unit ramp and unit acceleration inputs for the following system.

$$G(s) = \frac{10}{s(0.1s+1)(0.5s+1)}$$
7M

4. Sketch the root locus of a unity feedback system with $G(s) = \frac{k(s+2)}{s(s+1)(s+4)}$.

5. The open loop transfer function of a unity feedback system is $G(s) = \frac{k}{s(s+1)(s+10)}$.

Draw the Bode plot and determine the value of K for 40° phase margin. 14M 6. Consider a unity-feedback system whose open-loop transfer function is $G(s) = \frac{Ke^{-0.8s}}{(s+1)}$. Using the Nyquist plot, determine the critical value of K for stability. 14M

7. The open loop transfer function of a unity feedback system is given by, $G(s) = \frac{5}{s(s+1)(0.5s+1)}$. What is the phase margin of this system. If a lag compensator given by, $G_c(s) = \frac{(10s+1)}{(100s+1)}$ is added in cascade with the forward

path transfer function, determine, (i) Phase margin (ii) Gain cross over frequency (iii) Steady state error to a unity velocity input (iv) Gain margin 14M

8. a) Find the homogenous solution of the system,
$$\dot{X} = \begin{pmatrix} 0 & 1 \\ -2 & -3 \end{pmatrix} X; X_o = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
. 7M

b) Diagonalize the system matrix, $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{pmatrix}$ 7M

Page **1** of **1**

R-11/R-13

Hall Ti Code:	Cket Number : R-11/R-	13
	B.Tech. II Semester Supplementary Examinations Nov/Dec 2016	
	Mathematics – III	
Max A	(Common to EEE & ECE) arks: 70 Time: 3 H	
14102.14	Answer any five questions	OUIS
	All Questions carry equal Marks (14 Marks each)	
1. a	Evaluate $\int_{0}^{f/2} \sqrt{\tan u} d_u$.	7M
	0	71VI 7M
	Prove that $S(m,1/2) = 2^{2m-1}S(m,m)$.	7 111
Z. a	Prove that the function $f(z)$ defined by $x^{3}(1+i) - y^{3}(1-i)$	
	$f(z) = \frac{x^3(1+i) - y^3(1-i)}{x^2 + y^2} \ (z \neq 0), \ f(0) = 0$	
	is continous at the Cauchy's Riemann equations are satisfied at the at the origin, $yet = f_{r(0)} does not exist$ Find the apply a function where real part is $\frac{\sin 2x}{2}$	7M
b	Find the analytic function, whose real part is $\frac{\sin 2x}{(\cosh 2y - \cos 2x)}$	7M
3 a		
	$\frac{x^2}{\cosh^2 u} + \frac{y^2}{\sinh^2 u} = 1 \text{ and } \frac{x^2}{\cos^2 v} - \frac{y^2}{\sin^2 v} = 1.$	7M
h	$\cosh^2 u + \sinh^2 u = \cos^2 v + \sin^2 v$ Find all the roots of the equation $\tanh z+2=0$.	7M
	State and prove Cauchy's integral formula.	7M
		7 1 1 1
b	$\int_{c} (z - f/6)^3$	7M
5. a	Find the Taylor's expansion of $f(z) = \frac{1}{(z+1)^2}$ about the point z=-i.	7M
b	Expand $f(z) = \frac{1}{(z-1)(z-2)}$ in the regions (i) $ z < 1$, (ii) $1 < z < 2$.	7M
6. a	Using Residue theorem, evaluate $\int_{c} \tan z dz$ where c is the circle $ z = 2$.	7M
b	By Integrating around a unit circle, evaluate $\int_{0}^{2f} \frac{\cos 3_{\#}}{5 - 4\cos _{\#}} d_{\#}$.	7M
7. a	State and prove Rouche's theorem.	7M
b	Prove that the polynomial $z^5 + z^3 + 2z + 3$ has just one zero in the first quadrant of the complex plane.	7M
8. a	Find the image of the infinite strip $0 < y < \frac{1}{2}$ under the transformation	
	$w = \frac{1}{z}$.	7M
b	Find the Bilinear transformation which maps the points (,i,0) in the z- plane into (-1,-i,1) in the w-plane. ***	7M

Hall	Tick	et Number :	
Code	e : 1	IG341	R-13
		3.Tech. II Semester Supplementary Examinations Nov/Dec 2016	
		Signals and Systems (Electronics & Communication Engineering)	
м	lax.	. Marks: 70 Time: 03 Hour	S
		Answer any five questions All Questions carry equal marks (14 Marks each)	
1.	a)	Discuss the concept of signal space and hence approximation of a function using complete set of orthogonal functions.	8M
	b)		6M
2.	a)	Write down the trigonometric form of the Fourier series representation of a periodic signal.	7M
	b)	Explain the concept of generalized fourier series representation of signal f(t)	7M
3.	a)	Describe i) Signum function ii) Hilbert transform	8M
	b)	Explain the properties of Fourier transforms.	6M
4.	a)	Differentiate between LTI and LTV systems with examples	5M
	b)	Find whether the following systems are causal or non-causal	
		i) $y(t)=x(-t)$ ii) $y(t) = x(t+10)+x(t)$ iii) $y(t)=x(t)sin(t+1)$	9M
5.	a)	Explain the Graphical representation of Convolution with an example.	8M
	b)		
		i. Auto Correlation ii. Power Spectral Density	6M
6.	a)	Explain Natural and Flat top sampling and effects of under sampling	7M
	b)	Describe 1) what is aliasing effect 2) What is impulse sampling	7M
7.	a)	Find the Laplace transforms of the following functions	
7.	a)	i) Exponential Function ii) Unit step Function iii) Damped sign function	6M
	b)	Find the Inverse Laplace transform of the functions	
		1)Y(s) = $10s/(s+2)^3(s+8)$ 2) Y(s) = $2s^2+6s+6/(s+2)(s^2+2s+2)$	8M
8.	a)	Find the Z-transform of the following	
	,	i) $x[n]=cosnw.u[n]$ ii) $x[n]=a^nu[n]$	8M
	b)	Find the Inverse Z-transform of $X(z) = (x-1)^2 / z^2 - 0.1z - 0.56$	6M

1 Gill	IICK		·
ode	: 10	S245	/R-13
I	IB.	Tech. II Semester Supplementary Examinations Nov/Dec 2016)
		Switching Theory and Logic Design (Electronics & Communication Engineering)	
Mo	ax. I	Marks: 70 Time: 03 Hor	Jrs
		Answer any five questions	
		All Questions carry equal marks (14 Marks each)	
1.	a)	i) $2B1C_{16} = (?)_8$ ii) $1010111011_2 = (?)_{16}$	
		iii) $9834_{10} = (?)_{16}$ iv) $10AF_{16} = (?)_2$	8M
	b)	Describe error detection codes with examples	6M
2.	a)	Realize XOR and XNOR functionalities using Universal NOR gates.	8M
	b)	Describe switching functions-Canonical and Standard forms each with an example.	6M
3.	a)	Generate the prime implicants and essential prime implicants for	
	- /	$F(A,B,C,D) = m\{0,2,5,6,7,8,10,12,13,14,15\}$	10M
	b)	Represent 5-variable k-map with max-terms.	4M
4.	a)	Realize the functionality of 2-input NAND-Gate using MUX.	6M
	b)	Draw the conversion tables for binary to Gray and BCD to Ex-3.	8M
5.	a)	Distinguish PLA and PAL.	6M
	b)	Describe the Implementation of Boolean function using Threshold gate with an example.	8M
			OW
6.	a)	Distinguish synchronous and asynchronous sequential circuit.	4M
	b)	Design mod-5 asynchronous counter.	10M
7.	a)	Distinguish Mealy and Moore type FSMs	4M
	b)	Design Mealy type sequence detector for 1110 sequence.	10M
8.	a)	Describe the components of ASM chart. What are the features of ASM over	
		normal flow chart?	8M
	b)	Construct an ASM chart for binary multiplier.	6M