Hall Ticket Number :

Code: 4G241
II B.Tech. II Semester Supplementary Examinations Nov/Dec 2016
Electrical Machines-II
(Electrical \& Electronics Engineering)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) The maximum flux density in the core of $250 / 3000$ Volts 50 HZ single phase trans former is 1.2 Tesla. If the emf per turn is 8 volts, determine i) primary and secondary turns ii) area of the core.
b) Draw phasor diagram of transformer. on load considering i) resistive load ii) inductive load iii) capacitive load

OR

2. a) Draw and explain the no-load phasor diagram of a single phase transformer.
b) A transformer is connected to $2200 \mathrm{~V}, 40 \mathrm{~Hz}$ supply. The core loss is 800 watts out of witch 600 watts are due to hysteresis and remaining, eddy current losses. Determine the core loss if the supply voltage and frequency are 3300 V and 60 Hz respectively.

UNIT-II

3. a) A $15 \mathrm{KVA} 2000 / 200 \mathrm{~V}$ transformer has an iron loss of 250 W and full-load copper loss 350W. During the day it is loaded as follows:

No. of hrs.	Load	Power Factor
9	1/4 Load	0.5
7	Full Load	0.8
6	3/4 Load	Unity
2	No Load	---

Calculate the Energy Efficiency.
b) Define voltage regulation of a transformer and derive condition for i) zero regulation ii) maximum regulation.

OR

4. a) A $50 \mathrm{KVA}, 2200 / 110 \mathrm{~V}$ transformer when tested gave the following results

OC test: 400W, 10A, 110V
SC test: 808W, 20.5A, 90V
Find the efficiency at $3 / 4$ load at 0.707 pf lag and the regulation at 0.8 pf lead
b) Describe the tests to be done on a single-phase transformer to determine the equivalent circuit parameters.

UNIT-III

5. a) A120KVA, $6000 / 400 \mathrm{~V}, 3-\mathrm{Ph}$ ase, 50 Hz , transformer has an iron loss of 1800 W . The maximum efficiency occurs at $3 / 4$ th full load. Find the efficiency of the transformer at (i) Full load and 0.8 power factor and
(ii)The maximum efficiency at UPF.
b) Explain the scott connection of two single phase transformers?

OR

6. a) Two transformers connected in open delta, supply a 400KVA balanced load operating at 0.866 pf lagging. The voltage is 440 V , what is the
b) KVA supplied by each transformer.
ii) KW supplied by each transformer.
b) Write the difference between open- delta and Scot connection?

UNIT-IV

7. a) Explain the power flow diagram and torque slip characteristics of induction motor.
b) An induction motor has an efficiency of 0.9 when delivering an output of 37 KW . At this load, the stator Cu loss and rotor Cu loss each equals the stator iron loss. The mechanical losses are one third of the no load loss. Calculate the slip.

OR

8. a) Develop an equivalent circuit for three-phase induction motor. State the Difference between exact and approximate equivalent circuit.
b) A $100 \mathrm{~kW}, 330 \mathrm{~V}, 50 \mathrm{~Hz}, 3$ phase, star connected induction motor has a synchronous speed of 500 rpm . The full load slip is 1.8% and full load power factor 0.85 . Stator copper loss is 2440 W , iron loss is 3500 W , rotational losses is 1200 W . Calculate (i) rotor copper loss, (ii) the line current and (iii) the full load efficiency.

UNIT-V

9. a) Comparison between 3- \varnothing Induction motor and 3- \varnothing Induction generator.
b) Draw the circle diagram for a $440 \mathrm{~V}, 3-\Phi, 4-$ pole, 50 Hz , slip-ring induction motor from the following data: No load reading: $440 \mathrm{~V}, 9 \mathrm{~A}, \cos \emptyset_{0}=0.2$; Blocked rotor test; $110 \mathrm{~V}, 22 \mathrm{~A}, \cos \emptyset_{\mathrm{sc}}=0.4$; The stator and rotor copper losses are divided equally in blocked rotor test, the full load current is 20 A , calculate (i) power factor (ii) output power (iii) efficiency (iv) full load slip (v) starting torque.

OR

10 a) A 4-pole,50 Hz, 3- \varnothing, 4-pole induction motor develops maximum torque at a speed of 1350 rpm . And per phase rotor resistance is 0.2 . Calculate the value of external resistance that must be inserted in series with each rotor phase to produce a starting torque equal to half the maximum torque.
b) Discuss the slip torque characteristics of Induction motor in different modes.
Hall Ticket Number
Code: 4G243R-14
II B.Tech. II Semester Supplementary Examinations Nov/Dec 2016
Generation of Electric Power
(Electrical \& Electronics Engineering)
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks) $* * * * * * * * *$
UNIT-I1. a) What is the function of electrostatic precipitator used in the chimney of athermal power station? Explain7M
b) Explain the fire tube boiler used in thermal power station. 7M
OR
2. a) Explain the cooling arrangement used in the thermal power station. 7M
b) What are the different electric equipments used in the thermal power station?Explain.7M
UNIT-II
3. a) Draw the typical layout of hydro power station and discuss its generation 8M
b) Discuss the base load and peak load power plants 6M
OR4. a) Briefly explain the following components of Hydropower plant:
(i) Reservoir (ii) Surge tank (iii) Penstock 6M
b) Explain the principle of operation of a gas turbine plant with a schematic diagram 8M
UNIT-III
5. a) Explain the radiation hazards and safety measures incorporated in nuclear power plants. 6M
b) Explain the functions of the following in a nuclear power plant(i) Control Rod (ii) Moderator (iii) Reflector (iv) Biological shield8M
OR
6. a) What factors are taken in to account while selecting the site for a nuclear power station and explain each factor? 5M
b) What are the nuclear fuels and classify the nuclear reactors 5M
c) Explain the necessity of providing shield in a nuclear power plant 4M

UNIT-IV

7. Explain the following terms as applied to power system:
(i) Diversity factor
(ii) Plant capacity factor
(iii) Load factor
(iv) Average load
(v) Plant use factor
(vi) Load duration curve and load curve
(vii) reverse capacity of the plant

OR

8. A generation station supplies the following loads: 15000kW, 12000kW, $85000 \mathrm{~kW}, 60000 \mathrm{~kW}$ and 450 kW . The station has a max demand of 22,000 kW. Calculate: i) Demand factor ii) Diversity factor iii) No. of units supplied annually, if the load factor is 48%.

UNIT-V

9. What do you understand by electrical tariff? Discuss two part tariff, three-part tariff and power factor tariff.

OR

10. a) A consumer has a maximum demand of 200 kW at 40% load factor. If the tariff is Rs. 100 per kW of maximum demand plus 10 paise per kWh. Find the overall cost per kWh
b) A generation station has a max demand of 50 MW . Calculate the cost/kwh delivered from the following data:
(i) Capital cost $=$ Rs 95×105
(ii) Annual cost of fuel + oil $=$ Rs. 9×105
(iii) Taxes, wages and salaries $=$ Rs. 6×105
(iv) Rates of interest and deprecation is 10%. Annual load factor is 50%

II B.Tech. II Semester Supplementary Examinations Nov/Dec 2016

Linear Control Systems

(Electrical \& Electronics Engineering)
Time: 3 Hours
Max. Marks: 70
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Explain the necessity and effect of feedback in control systems?
b) Write the differential equation for the mechanical system shown in figure1. Determine the transfer function.

OR
2. a) Define the transfer function and discuss the limitations in transfer function representation
b) Obtain overall transfer function $\mathrm{C}(\mathrm{s}) / \mathrm{R}(\mathrm{s})$ of the system shown in figure2, using block diagram reduction technique. Draw the signal flow graph for the same system and verify the result using Mason's gain formula.

Figure 2

UNIT-II

3. a) Illustrate the effect of the value of damping ratio on the location of closed loop poles of standard second order system.
b) For a unity feedback system the open loop transfer function is given by $G(s)=\frac{200}{s(s+10)}$.
Determine: i) maximum overshoot ii) rise time iii) settling time and iv) steady state error if the input is a unit step.

OR

4. a) Discuss any three of the time domain specifications.
b) The open loop transfer function of a control system with unity feedback is $G(s)=\frac{500}{s(s+0.1 s)}$. Evaluate the error series for the system and determine the steady state error of the system when an input of $r(t)=1+2 t+t^{2} ; t>$ is applied.

UNIT-III

5. a) What is the effect of adding zeros to $\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})$ on the root focus.
b) Draw the complete root focus for a system with $G(s) H(s)=\frac{K(s+12)}{s^{2}(s+20)}$

OR

6. a) Briefly explain about Routh-Hurwitz criterion.
b) A feedback control system has loop transfer function $G(s) H(s)=\frac{K}{s(s+2)(s+10)}$. Sketch the root locus and determine the range of ' K ' for which the system is stable.

UNIT-IV

7. The open loop transfer function of a unity feedback control system is given by $G(s)=\frac{K}{s(1+0.2 s)(1+0.02 s)}$.

Draw Bode plots in magnitude and phase and hence determine the following:
i) Gain margin when $K=1$.
ii) The value of K for gain margin to be 20 dB .
iii) The phase margin corresponding to the above value of K.
iv) Gain margin, phase margin and corresponding frequencies for $\mathrm{K}=10$.

OR
8. Using Nyquist criterion determine condition for stability for the unity feedback
system having open loop transfer function $G(s)=\frac{K}{s\left(1+\tau_{1} s\right)\left(1+\tau_{2} s\right)}$.

UNIT-V

9. a) Draw electrical network configuration for phase lag-lead compensator and hence derive the transfer function for the same.
b) Explain the design procedure for lag-lead compensation in frequency domain
10. a) What do you understand by state transition matrix? State and prove its properties
b) Determine the time response of the following system
$\left[\begin{array}{l}\dot{x}_{1} \\ \dot{x}_{2}\end{array}\right]=\left[\begin{array}{cc}0 & 1 \\ -6 & -5\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]+\left[\begin{array}{l}0 \\ 1\end{array}\right] u(t)$
$y(t)=\left[\begin{array}{ll}1 & 0\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$, where $u(t)$ is the unit step and $x_{1}(0)=x_{2}(0)=0$.

Code: 4GC41

II B.Tech. II Semester Supplementary Examinations Nov/Dec 2016 Mathematics - III

(Common to EEE \& ECE)
Max. Marks: 70

UNIT-I

1. a) Evaluate $\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi}$
b) If $\tan (x+i y)=u+i v$ then show that $u \sinh 2 y=v \sin 2 x$.

OR

2. a) Evaluate $\int_{0}^{\frac{\pi}{2}} \sin ^{\frac{7}{2}} \theta \cos ^{\frac{3}{2}} \theta d \theta$.
b) Separate the real and imaginary parts of $\tanh z$.

UNIT-II

3. a) Apply C-R conditions to $f(z)=z^{3}$ and show that the function is analytic everywhere.
b) If $f(z)=u+i v$ is analytic function of z and if $u-v=e^{x}(\cos y-\sin y)$, find $f(z)$ in terms of z.

OR

4. a) Suppose $f(z)=u+i v$ is an analytic function. If $u=x\left(x^{2}-3 y^{2}\right)$, find harmonic conjugate $v(x, y)$ and write the corresponding complex potential $f(z)=u+i v$.
b) If $f(z)=u+i v$ is an analytic function. Show that the family of curves defined by $u(x, y)=$ constant cuts orthogonally the family of curves $v(x, y)=$ constant .

UNIT-III

5. a) Evaluate $\int_{C} \frac{e^{2 z}}{(z-1)(z-2)} d z$ where c is $|z|=3$ using Cauchy's integral formula
b) Expand the function $f(z)=\frac{z-1}{z^{2}}$ in a Taylor series with center $z_{0}=1$ then find its radius of convergence.

OR

6. a) Evaluate $\int_{c} \frac{1}{z} d z$, where c is the circle defined by $x=\cos t, y=\sin t, 0 \leq t \leq 2 \pi$
b) Find the Laurent's series expansion of $f(z)=\frac{1}{(z-1)(z-2)}$ for $1<|z|<2$ and hence, evaluate $\int_{C} f(z) d z$, where $C:|z|=1.5$.

UNIT-IV

7. a) Determine the poles of the function $f(z)=\frac{1}{(z-1)(z-3)}$ and find the residue at each pole.
b) Evaluate the real integral $I=\int_{0}^{2 \pi} \frac{1}{2+\operatorname{Cos} \theta} d \theta$ using residue theorem.

OR

8. a) State and Prove argument principle.
b) Prove that all the zeros of $z^{7}-5 z^{3}+12=0$ lie between the circles $|z|=1$ and $|z|=2$.

UNIT-V

9. Consider the points $1, i,-1$ in z-plane is mapped onto the points $i, 0,-i$ in w - plane under a bilinear transformation $f(z)$.
(i) Determine the bilinear transformation $f(z)$.
(ii) Find the image of $|z|<1$ under $f(z)$.
(iii) Find the Invariant points of $f(z)$.

OR

10. a) Find the bilinear transformation which maps $z=\infty, i, 0$ onto the points $w=0, i, \infty$
b) Find the image of the line $x=4$ in z-plane under the transformation $w=z^{2}$.

Hall Ticket Number :									
Code: 4G346 R-14									

Max. Marks: 70
(Electrical \& Electronics Engineering)
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Derive the output and draw the response of high pass $R C$ circuit for
i) Step input
ii) Square input
8M
b) In an RC low-pass circuit $R=2 k$ and $C=1$ F. A square wave with half period
of $5 s$ is applied as input to this circuit. Determine the output waveform. $6 M$

OR
2. a) Explain the RC integrator with neat input and output waveforms?

7M
b) A 10 hz symmetrical square wave whose peak-to-peak amplitude is 2 v is
impressed upon a high pass circuit whose lower $3-\mathrm{db}$ frequency is 5 HZ ,
calculate and sketch the output waveform. In particular, what is peak-to-peak
output amplitude?

UNIT-II

3. a) Explain the response of the Clamping circuit when a Square wave input is applied under Steady State conditions?

7M

b) What is meant by Piece wise linear approximation? Draw the V-I characteristics of junction diode on the basis of above approximation?

OR
4. a) Discuss series and shunt clipper using diode along with relevant waveforms?
b) Explain how transistor acts as a switch? Draw the characteristics and explain? 6M

UNIT-III
5. a) Illustrate the factors that influence the stability of relaxation devices? 7 M
b) Explain about transistor Bootstrap time-base generation? 7M

OR
6. a) What are the methods of generating a time-base waveforms? 7M
b) Discuss the differences between Miller Sweep circuit and Bootstrap Sweep circuit? 7M

UNIT-IV

7. a) With neat circuit explain the operation of Monostable Multivibrator. Also sketch waveforms and derive the pulse width?

7M
b) Design an Astable Multivibrator to produce an unsymmetrical wave $t_{1}=0.5 \mathrm{~ms}$
and $\mathrm{t}_{2}=0.4 \mathrm{~ms}$. The amplitude of the square wave is 15 v . Assume $\mathrm{h}_{\mathrm{fe}(\min)}=20$,
$\mathrm{I}_{\mathrm{C}(\text { sat })}=5 \mathrm{~mA}$ and $\mathrm{v}_{\mathrm{ce}(\text { sat })}=0 \mathrm{v}$.

OR
8. a) Design an Astable Multivibrator to generate a square wave of 5 KHZ frequency with a duty cycle of 25% ?

7M
b) Explain the symmetrical and unsymmetrical triggering of Bi-stable Multivibrator? 7 M

UNIT-V

9. a) Explain the operation of TTL circuit with neat diagram? 7 M
b) Compare CMOS logic families? 7M

OR
10. a) Draw the circuit diagram of CMOS, NOR and NAND gates and explain their operations?

7M
b) Distinguish between Sampling gate and logic gate and give examples of each? 7M

