| Hall Ticket Number : | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

R-14

Code: 4G343

II B.Tech. II Semester Supplementary Examinations Nov/Dec 2016 Analog Communication
 (Electronics \& Communication Engineering)

Time: 3 Hours
Max. Marks: 70
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) A broadcast $A M$ transmitter radiates 106 KW of carrier power, modulated to 60%.
i) What is total modulated power?
ii) What is total side band power
b) With neat block diagram explain the detection of AM using envelope detector. Explain how RC time constant is selected.

OR

2. a) Calculate the percentage power saving when the carrier and one of the side bands are suppressed in an AM wave modulated to a depth of

$$
\text { i) } 100 \% \text { ii) } 50 \%
$$

b) What is the need of VSB modulation? Why VSB transmission is widely used for TV broadcasting.

UNIT-II

3. a) Explain Reactance method of generation of FM signal. Discuss its basic principle of operation.
b) i) Compare NBFM and WBFM.
ii) Show that average power of FM carrier is constant.

OR

4. a) Draw the circuit of Balanced slope detector of FM demodulation and explain
its operation.
b) Explain with block diagram the PLL method of FM demodulation.

UNIT-III

5. a) Explain the noise performance of DSB- SC receiver and prove its S / N ratio is unity. 8 M
b) Explain the concept of pre-emphasis \& de-emphasis and mention its necessity.

OR

6. a) Derive the Noise figure in Frequency modulation. 8 M
b) Explain threshold effect in Angle modulation. 6M
UNIT-IV
7. a) Draw the block diagram of AM transmitter using High level modulation and explain the significance of each block. 8M
b) What is an Amplitude Limiter? Explain its operation with a neat circuit Diagram. 6M
OR
8. a) Classify Radio transmitters according to the type of modulation, service involved and frequency range involved. 6M
b) The RF frequency, local oscillator frequency and IF frequencies of an AMreceiver are $f_{s}=800 \quad f_{l}=1255 \mathrm{KHz}$ and I.F $=455 \mathrm{KHz}$ respectively
i. Determine image frequency.
ii. Image frequency rejection ratio for a loaded Q of 120. 8M
UNIT-V
9. a) Explain the generation and detection of PWM signals with neat diagram. 8M
b) Explain Time division multiplexing scheme. 6M
OR
10. a) Explain the generation and demodulation of a PAM signal with neat circuit diagram. 6M
b) Explain the generation and demodulation of a PPM signal. 8M

II B.Tech. II Semester Supplementary Examinations Nov/Dec 2016

Field Theory and Transmission Lines

(Electronics \& Communication Engineering)
Time: 3 Hours
Max. Marks: 70
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) State Gauss's law and obtain point form of first Maxwell's equation?
b) Find the gradient of the folli in poi scalar fields:

$$
\begin{aligned}
& (i) V=e^{-z} \sin 2 x \cosh y \\
& \text { (ii) } U=\rho^{2} z \cos _{2} \phi \\
& \text { (iii) } W=10 r \sin _{2} \theta c_{s,} \phi
\end{aligned}
$$

OR

2. a) Derive and obtain the relation between electric field intensity and electric potential?
b) A point ? J relation ed at (4,1, -3) e x-axis carries
 (Represent graphically with relevant co-ordinate system)?

UNIT-II

3. a) Discuss convection and conduction currents, hence derive point form of ohms law?

(i) A nemisphericar shell of radius 20 cm (ii) A spherical shell of radius $10 \mathrm{~cm} 6 \mathrm{~N} \quad 6 \mathrm{M}$

OR

4. a) Derive the expression for a capacitance of coaxial capacitor with neat schematic?
b) A dielectric sphere (${ }^{\circ}$ at its center. Calculate (i) The surface density of polarization charge on the surface of the sphere. (ii) The force exerted by a charge on a $-4 p C$ point charge placed on the sphere.

UNIT-III

5. a) Derive the expression of H for line current distribution using Biot - Savart's law along with graphical representation?
b) A steady stat ${ }^{\text {th }}$ gr rrent of representation? ductor bent in the form of square loop of side ' a '. Find the I'magnetic field intensity at the centre of the loop?

OR

6. a) Explain about the inconsistency of ampere's law and derive a Maxwell's expression of $\nabla \times \mathrm{H}$ for Time Varying EM fields?

UNIT-IV

7. a) Derive the expressions of anit-ivor a lossy medium?

 component?

OR

8. a) Derive and obtain the relation between reflection coefficient and transmission coefficient due to reflection of plane waves at normal incidence?
b) In free space ${ }^{*} I=0.2^{\text {t due to refle }}=1$ total power through (i) a square plate $\mathrm{o}_{\mathrm{i}}^{\mathrm{h}}$ side $10^{\cos \mathrm{cm}} \mathrm{ct}$ on plane ${ }^{a^{z}} A / m$. Finc 1 . (ii) a circular disc of radius 5 cm on plane ${ }^{x}=1$?

UNIT-V

9. a) Derive secondary constants in terms of primary constants of a transmission line?
b) The short circuit and open circuit impedance at 800 Hz of a 40 km long transmission line are $3200<-80^{\circ}$ and $1300<80^{\circ}$ respectively. Calculate the line constants R, L, G, c?

OR

10. a) Explain how quarter wave transformer is used for load matching and impedance measurement of a transmission line?
b) A telephone line has the following parameters: $R=40 \quad / \mathrm{m}, \mathrm{L}=0.2^{\text {ªtc }} \mathrm{m}, \mathrm{G}=400$ $\mu \mathrm{S} / \mathrm{m}$, and $\mathrm{C}=0.5 \mathrm{nF} / \mathrm{m}$. (i) If the line operates at 10 MHz , Calculate the characteristic impedance and velocity (ii) After how many meters will the voltage drop by 30 dB in the line?

Code: 4G245

II B.Tech. II Semester Supplementary Examinations Nov/Dec 2016
Electrical Technology
(Electronics \& Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Derive Z-Parameters in terms of ABCD-Parameters
b) Obtain y-parameters for the given network

2. a) Derive the condition of reciprocity \& symmetry for y - parameters
b) Explain ABCD-Parameter model of a passive two port network. Mention its applications
3. a) Obtain the expression for $R L$ series circuit, excited by DC source at $t=0$
b) Obtain the expression for current in RL series circuit, excited by $v(t)=v_{m} \sin (\omega t+\varnothing)$ at $t=0$. Assume zero initial condition

OR

4. a) In a series $R L$ circuit with $R=3, L=1 H$, DC voltage of 50 V is applied at $t=0$. Find the expression for current. Assume zero initial conditions
b) In a two mesh network shown below, obtain the currents i_{1} and i_{2} using Laplace transform method

UNIT-III

5. a) Write a short note on Band stop filter
b) Design a constant-k low pass filter to match with a line having characteristic impedance of 500 and to pass frequency up to 5 kHz .

OR

6. a) What is an attenuator? Derive the design equations for T-type attenuator 7M
b) Explain the analysis of prototype band pass filter
UNIT-IV
7. a) Explain the working principle of a simple loop DC Generator with neat sketch 7M
b) Derive EMF equation of a DC Generator. 7M
OR
8. a) Explain the principle of operation of a DC motor in detail 7M
b) Explain the operation of a 3 point starter with neat sketch 7M
UNIT-V
9. a) A 30 KVA , transformer has 500 primary and 30 secondary turns. The primary is connected to a 3300 V ac supply. Neglecting losses, Calculate (i) the secondary voltage (ii) the maximum flux in the core and (iii) the primary and secondary currents 7M
b) Explain OC and SC Test on transformer 7M
OR
10. a) Explain the operation of a single phase transformer with the help of relevant diagram 7M
b) Explain the principle of operation of capacitor start motor. 7M

Code: 4GC41

II B.Tech. II Semester Supplementary Examinations Nov/Dec 2016 Mathematics - III

(Common to EEE \& ECE)
Max. Marks: 70

UNIT-I

1. a) Evaluate $\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi}$
b) If $\tan (x+i y)=u+i v$ then show that $u \sinh 2 y=v \sin 2 x$.

OR

2. a) Evaluate $\int_{0}^{\frac{\pi}{2}} \sin ^{\frac{7}{2}} \theta \cos ^{\frac{3}{2}} \theta d \theta$.
b) Separate the real and imaginary parts of $\tanh z$.

UNIT-II

3. a) Apply C-R conditions to $f(z)=z^{3}$ and show that the function is analytic everywhere.
b) If $f(z)=u+i v$ is analytic function of z and if $u-v=e^{x}(\cos y-\sin y)$, find $f(z)$ in terms of z.

OR

4. a) Suppose $f(z)=u+i v$ is an analytic function. If $u=x\left(x^{2}-3 y^{2}\right)$, find harmonic conjugate $v(x, y)$ and write the corresponding complex potential $f(z)=u+i v$.
b) If $f(z)=u+i v$ is an analytic function. Show that the family of curves defined by $u(x, y)=$ constant cuts orthogonally the family of curves $v(x, y)=$ constant .

UNIT-III

5. a) Evaluate $\int_{C} \frac{e^{2 z}}{(z-1)(z-2)} d z$ where c is $|z|=3$ using Cauchy's integral formula
b) Expand the function $f(z)=\frac{z-1}{z^{2}}$ in a Taylor series with center $z_{0}=1$ then find its radius of convergence.

OR

6. a) Evaluate $\int_{c} \frac{1}{z} d z$, where c is the circle defined by $x=\cos t, y=\sin t, 0 \leq t \leq 2 \pi$
b) Find the Laurent's series expansion of $f(z)=\frac{1}{(z-1)(z-2)}$ for $1<|z|<2$ and hence, evaluate $\int_{C} f(z) d z$, where $C:|z|=1.5$.

UNIT-IV

7. a) Determine the poles of the function $f(z)=\frac{1}{(z-1)(z-3)}$ and find the residue at each pole.
b) Evaluate the real integral $I=\int_{0}^{2 \pi} \frac{1}{2+\operatorname{Cos} \theta} d \theta$ using residue theorem.

OR

8. a) State and Prove argument principle.
b) Prove that all the zeros of $z^{7}-5 z^{3}+12=0$ lie between the circles $|z|=1$ and $|z|=2$.

UNIT-V

9. Consider the points $1, i,-1$ in z-plane is mapped onto the points $i, 0,-i$ in w - plane under a bilinear transformation $f(z)$.
(i) Determine the bilinear transformation $f(z)$.
(ii) Find the image of $|z|<1$ under $f(z)$.
(iii) Find the Invariant points of $f(z)$.

OR

10. a) Find the bilinear transformation which maps $z=\infty, i, 0$ onto the points $w=0, i, \infty$
b) Find the image of the line $x=4$ in z-plane under the transformation $w=z^{2}$.

Code: 4G341

II B.Tech. II Semester Supplementary Examinations Nov/Dec 2016 Random Variables and Random Processes
(Electronics \& Communication Engineering)
Time: 3 Hours
Max. Marks: 70
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Explain the various distribution functions.
b) A die is tossed. Find the probabilities of the events $A=\{o d d$ number shows up\}, $B=\{$ number larger than 3 shows up\}, $A \cup B$ and $A \cap B$.

OR
2. a) With an example explain the following:
i) Equality likely events
ii) Exhaustive events.
iii) Mutually exclusive events.
b) In three boxes, there are capacitors as given in the table. An experiment consists of first randomly selecting a box, assuming each has same likelihood of selection, and then selecting a capacitor from chosen box
i) What is the probability of selecting a $0.01 \mu \mathrm{~F}$ capacitor, given that box- 2 is selected?
ii) if a $0.01 \mu \mathrm{~F}$ capacitor is selected, what is the probability it came from box-3

Number in the box				
Value ($\boldsymbol{\mu}$ F)	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	Totals
0.01	20	95	25	140
0.1	55	35	75	165
1.0	70	80	145	295
Totals	145	210	245	600

UNIT-II

3. a) Define the following with examples:
i) Moment
ii) Central moments
iii) Variance and skew
b) A discrete random variable X has possible values $x_{i}=i^{2}, i=1,2,3,4,5$ which occur with probabilities $0.4,0.25,0.15,0.1$ and 0.1 respectively. Find the mean value of X.

OR
4. a) Explain role of characteristic function of a Random Variable X and its advantage.
b) Explain Chebyshev's Inequality.

UNIT-III

5. a) A joint sample space for two random variables X and Y has four elements (1,1),$(2,2),(3,3)$ and $(4,4)$. Probabilities of these elements are $0.1,0.35,0.05$ and0.5 respectively.
i) Sketch the distribution function FXY (x, y)
ii) Find the probability of the event $\{\mathrm{X} \leq 2.5, \mathrm{Y} \leq 6\}$
iii) Find the probability of the event $\{X \leq 3\}$
b) Briefly explain the concept of jointly Gaussian random variables. 6M
OR
6. a) Briefly explain central limit theorem.
b) Explain the Distribution and Density functions of Sum of Two Random Variables.

UNIT-IV

7. a) Explain the classification of different Random processes with neat graphs.
b) Explain the concept of Stationarity and independence.

OR

8. a) A random process is defined by $Y(t)=X(t) \cos \left(\omega_{0} t+\varphi\right)$ where $X(t)$ is a wide sense stationary random process that amplitude modulates a carrier of constant angular frequency ω_{0} with a random phase φ independent of $X(t)$ and uniformly distributed on ($-\pi, \pi$)
i) Find $E[Y(t)]$
ii) Find the auto correlation of $Y(t)$
iii) Is $Y(t)$ a WSS?
b) Define cross correlation function of two random processes $X(t)$ and $Y(t)$ and state the properties of cross correlation function.

UNIT-V

9. a) Define power density spectrum and list its properties.
b) Consider a random processes $X(t)=A \cos \left(\omega_{0} t+\varphi\right)$ where A and ω_{0} are real constants and φ is a random variable uniformly distributed over the interval $(-\pi, \pi)$. Find the average power in $\mathrm{X}(\mathrm{t})$.
OR
10. a) Derive the relationship between cross power spectrum and cross correlation function. 9M
b) Briefly explain the spectral characteristics of random processes. 5M
\square

Code: 4G342

II B.Tech. II Semester Supplementary Examinations Nov/Dec 2016

Switching Theory and Logic Design

(Electronics \& Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Perform (15$)_{10}=(28)_{10}$ using (i) 6 -bit 1 's complement (ii) 6 -bit 2 's complement representation.
b) The Hamming code 101101101 is received. Correct it if any errors. There are four parity bits and odd parity is used.

OR

2 a) Simplify the ean expression
(i) $\left.\mathrm{AB}+\frac{? \text { following } \overline{A C}+A \bar{B} C(A B}{}+\mathrm{C}\right)$
(ii) $\mathrm{Y}=\sum \mathrm{m}(1,3,5,7)$
(iii) Find the dual of the following expression
b) Obtain XOR gate using
(i) minimum number of NAND gates only and
(ii) minimum number of NOR gates only.

UNIT-II

3. a) Convert the given expression in standard POS form

$$
\begin{aligned}
& F_{1}(A, B, C, D)=(A+B)(B+C)(A+C) \\
& F_{2}(P, Q, R)=(P+\overline{2})\left(P+R_{1}^{\prime}\right.
\end{aligned}
$$

b) Realize the following expressions using NAND and NOR logic separately

$$
Y=P Q^{\prime}+Q S+Q^{\prime} R S^{\prime}
$$

OR

4. Reduce the following Boolean expression using tabulation method and verify using k-map

$$
Y=m_{0}+m_{2}+m_{4}+m_{6}+m_{8}+m_{10}+m_{11}+m_{12}+m_{13}
$$

UNIT-III

5. a) Derive the necessary equations and then draw the circuit for the full adder
circuit with two half adders and OR gate.
b) With neat sketch and function table, explain the $8: 1$ multiplexer.

OR

6. a) Derive a BCD to excess-3 code converter using ROM.
b) Discuss about the functionality of a PAL. How its program table is prepared.

UNIT-IV

7 a) What is race around condition? Explain how it can be eliminated in Jk masterslave flip-flop explain clearly.
b) Design a T flip-flop using JK flip-flop. Use k-maps for the design.

OR

8. a) Compare synchronous and asynchronous sequential circuits.
b) Draw and explain the working of 3-bit synchronous up/down counter.

UNIT-V

9. Convert the following Mealy machine into a corresponding Moore machine

PS	NS,Z	
	$X=0$	$X=1$
A	C, 0	B, 0
B	A, 1	D, 0
C	B, 1	A, 1
D	D, 1	C, 0
OR		

10. a) Explain in detail the block diagram of ASM chart
b) Draw a ASM chart for a 2-bit binary counter having one enable line E such that:
$E=1$ (counting enabled)
$\mathrm{E}=0$ (counting disabled)
