Hall T	icke	et Number : R-14	
Code	: 40		
I	IB.	Tech. II Semester Supplementary Examinations Nov/Dec 2016	
		Analog Communication	
Max	Мс	(Electronics & Communication Engineering) arks: 70 Time: 3 Hou	ırs
	-	Ill five units by choosing one question from each unit ($5 \times 14 = 70$ Marks	

	-)		
1.	a)	A broadcast AM transmitter radiates 106KW of carrier power, modulated to 60%.	
		i) What is total modulated power?	,
	L)	ii) What is total side band power	7M
	b)	With neat block diagram explain the detection of AM using envelope detector. Explain how RC time constant is selected.	7M
		OR	
2.	a)	Calculate the percentage power saving when the carrier and one of the side	
		bands are suppressed in an AM wave modulated to a depth ofi) 100% ii) 50%	7M
	b)	What is the need of VSB modulation? Why VSB transmission is widely used for TV broadcasting.	7M
		UNIT-II	
3.	a)	Explain Reactance method of generation of FM signal. Discuss its basic	014
	b)	principle of operation.	8M
	0)	i) Compare NBFM and WBFM.ii) Show that average power of FM carrier is constant.	6M
		OR	0111
4.	a)	Draw the circuit of Balanced slope detector of FM demodulation and explain	
		its operation.	7M
	b)	Explain with block diagram the PLL method of FM demodulation.	7M
		UNIT–III	
5.	a)	Explain the noise performance of DSB- SC receiver and prove its S/N ratio is unity.	8M
	b)	Explain the concept of pre-emphasis & de-emphasis and mention its necessity.	6M
		OR	
6.	a)	Derive the Noise figure in Frequency modulation.	8M
	b)	Explain threshold effect in Angle modulation.	6M

UNIT-IV

7.	a)	Draw the block diagram of AM transmitter using High level modulation and explain the significance of each block.	8M					
	b)	What is an Amplitude Limiter? Explain its operation with a neat circuit Diagram.	6M					
		OR						
8.	a)	Classify Radio transmitters according to the type of modulation, service involved and frequency range involved.	6M					
	b) The RF frequency, local oscillator frequency and IF frequencies of an AM receiver are $f_s = 800$ $f_l = 1255$ KHz and I.F = 455KHz respectively							
		i. Determine image frequency.						
		ii. Image frequency rejection ratio for a loaded Q of 120.	8M					
		UNIT–V						
9.	a)	Explain the generation and detection of PWM signals with neat diagram.	8M					
	b)	Explain Time division multiplexing scheme.	6M					
		OR						
10.	a)	Explain the generation and demodulation of a PAM signal with neat circuit diagram.	6M					
	b)	Explain the generation and demodulation of a PPM signal.	8M					

Hall Ti	cket	Number :												ſ			-
Code: 4	4G34	4			1	_L	1		1	J	1	1	1		F	R-14	
II E	3.Te		neste Field Iectro	Th	eor	y aı	nd T	ran	smis	ssio	n Lir	nes		De	c 20	016	
Max. N Answer	-					ne c		tion								3 Hour Marks)	S
							U	NIT-									
1.	a)	State Gau	ss's la	aw a	and c	btair	n poir	nt for	m of	first	Maxv	vell's	equa	atior	?ו		8M
	b)	Find the g $(i)V = e$ $(ii)U = \rho$ $(iii)W = 0$	^{-z} sin ² z cos	2x с 52ф	о _s _k y	, DV	n poi	scala	ar fiel	ds:							
		("")" =	10/51/	120	τıs Ψ			~									6M
2.			d obte	nin t	bo r	alatic	n ha)R	ootrio	field	Linto	noity	000	4 6		
Ζ.	a)	Derive and potential?											·			electric	8M
	b)	A point charge 2 (Represent	charge n <i>C /m</i> . nt grap	€ 1(Ift ohica	ן _h e פ ally v	: is Iane vith r	loca $z =$	ed 3 als ant co	at (2 so ca p-ord	i, 1, – arries linate	-3 5 ¹ N nC Syst	vhil ^e / <i>m</i> ²· :em)?	the Fin	x-a d E	at (1	, 1, 1)?	6M
							U	NIT-	II								
3.	a)	Discuss co									deriv	e poir	nt forn	n of	ohms		8M
	b)	$\int_{r}^{s - s} \frac{1}{r^{3}} $	ovectio cosec Spheri	יר גי + כמו :	nd co <i>sin0</i> Shell	οdu a a a a a a a a a a a a a	adius	200	alcula m (i	ate t i) A S						nrol _{igh} 81 10 cm 61	
4.	a)	Derive the	expre	ssio	n for	a ca	pacita	ance	of co	axial	capa	citor	with r	neat	sche	matic?	8M
	b)	A dielectric at its cent surface of charge pla	er. Ca	alcul sphe	late ere. (ā) Th (ii) Th	ne su ne fo	irface	e der	nsity	of po	olariz	ation	cha	arge	on the	6M
							UN	IIT—I	II								
5.	a)	Derive the law along	with g	grap	hical	repr	esen	tatio	n?				-				8M
	b)	A steady s loop of sid	ta ^{th g} te c	rre Finc	ent of d the	[:] Н 1 repr <i>I ап</i> mag	or lir esen 1 <i>ps</i> fl netic	tatio ow ir field	nren n? n a co i <i>nte</i>	t dua	ctor b at th	oent i e cer	n the htre o	forr of the	n of s e loo _l	square p?	6M
								С	R								
6.	a)	Explain ab	n of ⊽	×H f	or Ti	me \	/aryir	ng El	M fie	lds?					well'	S	8M
	b)	In air, $\frac{1}{E}$ =	$\left(\begin{array}{c} s_{1} \frac{n}{r} \theta \\ r \end{array} \right)$	ne in ×H f) co :	icons or Ti s[(6	sister me \ ×10	ζέ ^y yii ar στ) −	βr		v_n	. Find	teri βa	jd H	?			6M
																Page 1 o	f 2

8M

UNIT–IV

- 7. a) Derive the expressions of $a, \beta, \eta, E \in \mathcal{M}$ or a lossy medium? b) $\overset{\mathsf{D}}{\underset{es}{\overset{\mathsf{D}}{=}} n \underbrace{\mathsf{E}^{\mathsf{V} \mathfrak{C}}}_{\mathsf{N}} w^{\mathsf{e}} \underbrace{\mathfrak{e}}_{\mathsf{U}} \underbrace{\mathsf{I}^{\mathsf{O}}}_{\mathsf{N}} \underbrace{\mathsf{I}^{\mathsf{C}}}_{\mathsf{N}} \overset{\mathsf{O}}{\underset{es}{\overset{\mathsf{O}}{=}} u^{\mathsf{I}}} \underbrace{\mathsf{I}^{\mathsf{O}}}_{\mathsf{N}} \underbrace{\mathsf{I}$
- 8. a) Derive and obtain the relation between reflection coefficient and transmission coefficient due to reflection of plane waves at normal incidence?
 - b) In free space $f_{l}^{c} = 0.2^{t}$ due to refie to the state of the space $f_{l}^{c} = 0.2^{t}$ due to refie to the space f_{l}^{c} side $10^{cos} (t x) a^{z} A/m$. Find 1. (ii) a circular disc of radius 5 cm on plane x = 1? 6M

UNIT–V

- 9. a) Derive secondary constants in terms of primary constants of a transmission line? 8M
 - b) The short circuit and open circuit impedance at 800 Hz of a 40 km long transmission line are 3200<-80° and 1300<80° respectively. Calculate the line constants R, L, G, c?
 6M

OR

- 10. a) Explain how quarter wave transformer is used for load matching and impedance measurement of a transmission line?
 - b) A telephone line has the following parameters: R=40 /m, L=0.2^{nate}m, G=400 μS/m, and C=0.5 nF/m. (i) If the line operates at 10 MHz, Galculate the characteristic impedance and velocity (ii) After how many meters will the voltage drop by 30 dB in the line?

Hall Ticket Number :															
Code:	4 G	245												R-14	
II	B.1	ech. II Ser			Elec	ctric	al T:	ech	[,] Exc nnol atior	ogy	,			ec 2016	
Max. N	Ла	•			CS &				unor	ιΓιί	JIIIC	enné		Time: 3 Ho	urs
Answer	r al	l five units b	y ch	100S	ing a	one	****	****		n ec	ich ı	Jnit	(5x14	= 70 Marks	;)
							l	UNIT	-1						
	a)	Derive Z-Pa								mete	rs				7M
I	b)	Obtain y-pai	ame	ters	J	ie giv 		ietwo		-1					
7M OR													7M		
2. a	a)	Derive the c	ondit	ion c	of rec	iprod	city &	_		y for	y- pa	aram	eters		7M
b) Explain ABCD-Parameter model of a passive two port network Mention its										7M					
							ι	JNIT	-11						
3. a	a)	Obtain the e	expre	essic	on fo	r RL	serie	es ci	rcuit,	exci	ited I	by D	C sourc	e at t=0	7M
ł	b)	Obtain the $v(t) = v_m si$												excited by	7M
								OF	R						
4. a	a)	In a series at t = 0. Fir										-			7M
ł	b)	In a two m Laplace tran	sforr)	0Ω ///	, obt	ain t	he c]	nts i₁ ar 2uF	nd i ₂ using	
							U	JNIT-	_						7M

5.	a)	Write a short note on Band stop filter 7						
	b)	Design a constant-k low pass filter to match with a line having characteristic impedance of 500 and to pass frequency up to 5kHz.						
		OR						
6.	a)	What is an attenuator? Derive the design equations for T-type attenuator	7M					

b) Explain the analysis of prototype band pass filter

7M

UNIT–IV

7.	a)	Explain the working principle of a simple loop DC Generator with neat sketch	7M
	b)	Derive EMF equation of a DC Generator.	7M
		OR	
8.	a)	Explain the principle of operation of a DC motor in detail	7M
	b)	Explain the operation of a 3 point starter with neat sketch	7M
		UNIT–V	
9.	a)	A 30KVA, transformer has 500 primary and 30 secondary turns. The primary is connected to a 3300V ac supply. Neglecting losses, Calculate (i) the secondary voltage (ii) the maximum flux in the core and (iii) the primary and	
		secondary currents	7M
	b)	Explain OC and SC Test on transformer	7M
		OR	
10.	a)	Explain the operation of a single phase transformer with the help of relevant diagram	7M

b) Explain the principle of operation of capacitor start motor.

Hall ⁻	Ticke	et Number :													
Code	: 4G	C41								<u>]</u>]	R-14	
II	B.T	ech. II Serr	nest	er S				-			atio	ns N	lov/De	ec 2016	
							emo								
Max.	Mar	'ks: 70		(mme			ΞĞΕ	CE)				Time: 3 Ho	Urs
Answ	rer a	II five units b	by cł	າວວ	sing	one	que ****	stior	n fro	m eo	ach	unit	(5x14	4 = 70 Mark	ks)
							ι	JNIT	-1						
1.	a)	Evaluate $\int_{-\infty}^{\infty}$	e - x	dx^2	= √	\overline{f}									7M
b) If $tan(x+iy) = u + iv$ then show that $u \sinh 2y = v \sin 2x$.									7M						
OR															
	2. a) Evaluate $\int_{0}^{\frac{f}{2}} \sin^{\frac{7}{2}} d_{\pi} d_{\pi}$.														
2.	a)	Evaluate∫si	$n^{\overline{2}}$ "	$\cos^{\overline{2}}$	" d"	•									7M
	b)	Separate th	e rea	al an	id im	agin	ary p	arts	of ta	nh <i>z</i> .					7M
	,					U		INIT-		-					
3.	a)	Apply C-R	cond	ditior	ns to	f(z	z) = z	³ and	d sho	ow th	nat tl	ne fu	unction	is analytic	
		everywhere	•												4M
	b)	If $f(z) = u +$ in terms of z		anal	ytic f	uncti	on o	f <i>z</i> ai	nd if i	u - v =	$=e^{x}($	cos y	– sin y)	, find $f(z)$	10M
								OF	2						
4.	a)	Suppose f (z	() = u	+iv	is ar	ana	alytic	func	tion.	lf <i>u</i> =	= x(x	$^{2}-3$	y^2), fin	d harmonic	
		conjugate v	(x, y)	and	l write	e the	corre	espor	nding	com	plex	ooter	tialf(z)) = u + iv.	7M
	b)	If $f(z) = u + it$	v is a	ın ar	nalyti	c fur	octior	n. Sh	iow t	hat t	he fa	mily	of curv	ves defined	
		by $u(x, y) =$	cons	tant (cuts	ortho	ogon	ally t	he fa	amily	of c	urves	Sv(x, y)	= constant.	7M
				_			U	NIT-	-111						
5.	a)	Evaluate $\int_{C} \frac{1}{C}$	(z-1)	$\frac{e^{2z}}{2}$	$\overline{-2)}^{d}$	z wh	ere a	ris z	= 3	usinę	g Ca	uchy	's integ	ral formula	7M
	b)	Expand the	fun	ction	f(z)	$y = \frac{z}{z}$	$\frac{-1}{2}$ in	a T	aylo	r ser	ies v	vith o	center	$z_0 = 1$ then	
		find its radiu													7M
								OF	2						
6.	a)	Evaluate $\int_{c} \frac{1}{2}$	$\frac{1}{z}dz$,	whe	ere c	is th	e cir	cle d	efine	ed by	x = c	$\cos t$,	$y = \sin t$	$t, 0 \le t \le 2f$	4M
	b)	Find the Lau	urent	t's se	eries	expa	ansio	n of	f(z)	$=\frac{1}{(z)}$	$\frac{1}{(-1)}$	$\frac{1}{(z-2)}$	<u>-</u> for1 <	z < 2 and	
		hence, eval	uate	$\int_{C} f$	(z)dz	ː, wł	nere	C: z	=1.5						10M

UNIT–IV

- 7. a) Determine the poles of the function $f(z) = \frac{1}{(z-1)(z-3)}$ and find the residue at each pole. 6M
 - b) Evaluate the real integral $I = \int_{0}^{2f} \frac{1}{2 + \cos \pi} d_{\pi}$ using residue theorem. 8M

OR

8. a) State and Prove argument principle.

b) Prove that all the zeros of $z^7 - 5z^3 + 12 = 0$ lie between the circles |z| = 1 and |z| = 2.

UNIT-V

9. Consider the points 1, i, -1 in *z* -plane is mapped onto the points i, 0, -i in *w* - plane under a bilinear transformation f(z).

- (i) Determine the bilinear transformation f(z).
- (ii) Find the image of |z| < 1 under f(z).
- (iii) Find the Invariant points of f(z). 14M

OR

- 10. a) Find the bilinear transformation which maps $z = \infty, i, 0$ onto the points $w = 0, i, \infty$ 7M
 - b) Find the image of the line x = 4 in z-plane under the transformation $w = z^2$. 7M

Hall Ticket Number :		
----------------------	--	--

Code: 4G341

II B.Tech. II Semester Supplementary Examinations Nov/Dec 2016

Random Variables and Random Processes

(Electronics & Communication Engineering)

Max. Marks: 70 Time: 3 Hours Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)

- 1. a) Explain the various distribution functions.
 - b) A die is tossed. Find the probabilities of the events A={odd number shows up}, B={number larger than 3 shows up}, A U B and A B.
 7M

OR

- 2. a) With an example explain the following:
 - i) Equality likely events
 - ii) Exhaustive events.
 - iii) Mutually exclusive events.
 - b) In three boxes, there are capacitors as given in the table. An experiment consists of first randomly selecting a box, assuming each has same likelihood of selection, and then selecting a capacitor from chosen box
 - i) What is the probability of selecting a 0.01μ F capacitor, given that box-2 is selected?
 - ii) if a 0.01μ F capacitor is selected, what is the probability it came from box-3

Number in the box													
Value (µF)	1	2	3	Totals									
0.01	20	95	25	140									
0.1	55	35	75	165									
1.0	70	80	145	295									
Totals	145	210	245	600									

7M

6M

8M

7M

UNIT–II

- 3. a) Define the following with examples:
 - i) Moment
 - ii) Central moments
 - iii) Variance and skew
 - b) A discrete random variable X has possible values $x_i = i^2$, i = 1,2,3,4,5 which occur with probabilities 0.4, 0.25, 0.15, 0.1 and 0.1 respectively. Find the mean value of X.

OR

- 4. a) Explain role of characteristic function of a Random Variable X and its advantage. 7M
 - b) Explain Chebyshev's Inequality.

R-14

7M

7M

7M

7M

7M

UNIT–III

5.	a)	A joint sample space for two random variables X and Y has four elements (1,1), (2,2), (3,3) and (4,4). Probabilities of these elements are 0.1, 0.35, 0.05 and
		0.5 respectively.
		i) Sketch the distribution function FXY (x, y)

- ii) Find the probability of the event {X 2.5, Y 6}
- iii) Find the probability of the event {X 3}
- b) Briefly explain the concept of jointly Gaussian random variables. 6M

OR

- 6. a) Briefly explain central limit theorem.
 - b) Explain the Distribution and Density functions of Sum of Two Random Variables.
 7M

UNIT–IV

7. a) Explain the classification of different Random processes with neat graphs. 7M

b) Explain the concept of Stationarity and independence.

OR

- 8. a) A random process is defined by Y(t)= X(t) cos(0t+) where X(t) is a wide sense stationary random process that amplitude modulates a carrier of constant angular frequency 0 with a random phase independent of X(t) and uniformly distributed on (-,)
 - i) Find E[Y(t)]
 - ii) Find the auto correlation of Y(t)
 - iii) Is Y(t) a WSS?
 - b) Define cross correlation function of two random processes X(t) and Y(t) and state the properties of cross correlation function.
 7M

9. a) Define power density spectrum and list its properties. 7M

b) Consider a random processes X(t)= A cos(0t+) where A and 0 are real constants and is a random variable uniformly distributed over the interval (- ,). Find the average power in X(t).
 7M

OR

- 10. a) Derive the relationship between cross power spectrum and cross correlation function. 9M
 - b) Briefly explain the spectral characteristics of random processes. 5M

Hall T	icke	t Number :	_									
Code:	4G3	R-14										
II	B.T€	ech. II Semester Supplementary Examinations Nov/Dec 2016 Switching Theory and Logic Design (Electronics & Communication Engineering)										
Max. I Answe	-		-									
		UNIT–I										
1.	a)	Perform (15) ₁₀ = (28) ₁₀ using (i) 6-bit 1's complement (ii) 6-bit 2's complement representation.	6									
	 b) The Hamming code 101101101 is received. Correct it if any errors. There are four parity bits and odd parity is used. 8 											
		OR										
2	a)	Simplify the ean expression (i) $AB + \frac{BC}{AC} + ABC (AB + C)$ (ii) $AB + \frac{BC}{AC} + ABC (AB + C)$	2 3									
		 (ii) Y = `m (1,3,5,7) (iii) Find the dual of the following expression vwx + vwyz + wxy + vxyz 	3									
	b)	Obtain XOR gate using (i) minimum number of NAND gates only and (ii) minimum number of NOR gates only.	6									
		UNIT–II										
3.	a)	Convert the given expression in standard POS form $F_1(A,B,C,D) = (A+B)(B+C)(A+C)$										
		$F_2(P,Q,R) = (P + \overline{Q})(P + R)$	7									
	b)	Realize the following expressions using NAND and NOR logic separately Y = PQ' + QS + Q'RS'	71									
		OR										
4.		Reduce the following Boolean expression using tabulation method and verify using k-map										
		$Y = m_0 + m_2 + m_4 + m_6 + m_8 + m_{10} + m_{11} + m_{12} + m_{13}$ UNIT-III	14									
5.	a)	Derive the necessary equations and then draw the circuit for the full adder circuit with two half adders and OR gate.	7									
	b)	With neat sketch and function table, explain the 8:1 multiplexer. OR	71									
6.	a)	Derive a BCD to excess-3 code converter using ROM.	7									
	b)	Discuss about the functionality of a PAL. How its program table is prepared.	7									

7M

7M

UNIT-IV

7	a)	What is race a slave flip-flop		•	ow it can be eliminate	ed in Jk master-	7M							
	b)	Design a T fli	p-flop using 、	JK flip-flop. Use	k-maps for the desig	jn.	7M							
	OR													
8.	a)	Compare synchronous and asynchronous sequential circuits.												
	b)	Draw and exp	w and explain the working of 3-bit synchronous up/down counter.											
	UNIT-V													
9.		Convert the fo	ollowing Mea	ly machine into	a corresponding Mo	ore machine								
			PS\	1	NS , Z									
			P3/	X = 0	X = 1									
			А	C, 0	B, 0									
			В	A, 1	D, 0									
			C B, 1 A, 1											
			D	D, 1	C, 0		14M							

10. a) Explain in detail the block diagram of ASM chart

b) Draw a ASM chart for a 2-bit binary counter having one enable line E such that:

OR

- E = 1(counting enabled)
- E = 0(counting disabled)

Page **2** of **2**