Hall Ticket Number :														
Code: 4G254			I	1		1	1	1	1	1	1	J		R-14
		3.Tech. I Sem		•	•								Dec 20)17
			rical									ents		
Max.	Mc	(1 1rks: 70	Electri	cai	ana	Elec	ron	ICS E	ngin	ieeri	ing j		Time	: 3 Hours
		er all five units k	by cho	osiną	g on	•		n fro	m ec	ach (unit (5 x 14		
						****	***** UNI	т_1						
1.	a)	Explain about co	ntrollin	g dev	vices	and c			evices	s use	d in i	ndicatii	ng instru	ments.
b) Explain the classification of moving coil instruments.														
OR														
2.	a)	Explain the var	ious ei	rors	in Pl	ММС	instr	ume	nts.					
	b)	Explain principl	e of op	perat	ion o	of dyn	namo	mete	er typ	e mo	oving	coil ir	nstrume	nt.
									_					
-							UNI							
3.	a)	Explain principle and operation of power factor meter												
	b)	Explain Dynamometer type of single phase power factor meter OR												
4.	a)	Explain about L	ow po	wert	facto	r wat	-							
	b)	Explain dynam							or me	eter f	or ba	lance	d 3-pha	se load
	~,													
							UNIT	-111						
5.	a)	Explain for the r	neasu	eme	nt of	medi	um re	esista	ance	using	g Amı	meter-	Voltmet	er method
	b)	Explain for the	meası	irem	ent o	f cap	acita	nce	usin	g De	e Sau	ty bri	dge mei	thod
							-	DR						
6.	a)	Explain for the							•			•		bd
	b)	Explain for the	meası	Irem	ent o	f frec	quenc	cy us	ing V	Vien	bridg	ge me	ethod	
7.	a)	Explain for the p	rincinle	ofor	oerati				tiome	oter f	or the	meas	urement	of current
7.	b)		-	-			-					meas	arement	or ourient
	2)	Explain the method to determine Hysteresis Loop OR												
8.	a)	Explain the method to measure flux and flux density												
	b)	Explain the me	thod to	o mea	asure	e the	value	e of r	nagn	etizi	ng fo	orce		
							UNI							
9.	a)	Explain the diff	erence	es be	twee	n ho	rizon	tal ar	nd ve	ertica	l am	plifier		
	b)	What are Lissa	jous p	atterr	าร			_						
10	2)	Explain the prin		of on	oroti	on of		ס יח ורי	111					
10.	a) b)	Explain the prir Explain the pur	•	•			•			in D	\/\/			
	b)		hose (n Su	0005		appro **		auon	U U	VIVI			

Hall	Tick	et Number :								D 14		
ode	: 4G2	251								R-14		
	II B.	Tech. I Ser	neste					tions No	ov/Dec	: 2017		
			(Flec			Nachin stronics		rina)				
	-	rks: 70	-				-			ne: 3 Hour		
A	nswe	er all five unit	ts by cł	noosing	•	estion fro ****	om each	unit (5 :	k 14 = 70	Marks)		
						UNIT–I						
1.	a)	Discuss the neat sketch		ructiona	l details	of a salie	ent pole s	synchron	ous mac	hine with		
	b)	A 3-phase s a line voltag per phase a i) No. of pol	ge of 42 and 4 c	25 V at 6 onducto	60 Hz on ors per sl	open cir ot. Assur	cuit. The ne full pit	stator hatched coi	as 3 slots ls. Calcu	per pole		
		 i) No. of poles ii) the useful flux per pole. Consider winding factors. OR 										
2.	a)	What are the advantages and disadvantages of short pitched and distributed winding in alternator?										
	b)	Find the rms values of phase voltage for a 3-ph, 50 Hz, 6 pole 72 slot alternator having a double layer winding with 20 turns/coil. The coil span is 5/6 of pole pitch. The speed is 1000 rpm and flux per pole is 0.048 Wb. Find (i) frequency (ii) number of turns per phase (iii) emf per phase.										
3.	a)	Describe a a salient po			ermine d	irect axis	and qua	drature a	axis react	tances of		
	b)	A 100 kVA, 3000V, 50Hz 3-phase star connected alternator has effective armature resistance of 0.2 ohms. The field current of 40 A produce short-circuit current of 200 A and an open circuit e.m.f of 1040 V (line). Calculate the full load voltage regulation at 0.8 lagging and 0.8 leading power factors. Draw phasor diagrams.										
		1				OR						
4.		The OC ar alternator a			sults for	a 3-ph	50 Hz,6	5-pole 44	0 V,Y-c	onnected		
		l _f	2	4	6	7	8	10	12	14		
		Voc	156	288	396	440	474	530	568	592		

under full load zero power conditions is 15 A. The armature resistance is 0.2 ohms/ph. Find the regulation at full load current of 40A at 0.8 lagging pf. Using (i) mmf method (ii) potier triangle method. And also comment on the results

14M

UNIT-III

5.	a)	What is synchronizing power and explain its role in load sharing during parallel operation?	7M
	b)	Two similar 400V, 3-ph alternators share equal kW power delivered to a balanced 3-ph 50 kW, 0.8 pf lag load. If the power factor of one is 0.95 lag, find the power factor and the current supplied by the other machine.	7M
		OR	
6.	a)	Discuss the effect of change in excitation and change in mechanical power input on the operation of an alternator on infinite bus?	7M
	b)	Two 3-ph alternators are working in parallel with the following particulars:	
		Alternator 1: Z1 = (0.2+j2) ohms/ph; E1 = (2000+j0) V/ph	
		Alternator 2: Z2 = (0.2+j2) ohms/ph; E2 = (2200+j100) V/ph	
		Load: ZL = (3+j4) ohms/ph. Determine the kW output and power factor of each	
		alternator	7M
		UNIT–IV	
7.	a)	What is a synchronous condenser? Explain its operation.	7M
	b)	A 400-V, 6-pole, 3-phase, 50 Hz, start connected synchronous motor has a resistance and synchronous reactance of 0.5 ohm and 4 ohm per phase respectively. It takes a current of 15 A at unity power factor when operating with a certain field current. If the load torque is increased until the line current is 60 A, the field current remaining unchanged, find the gross torque developed, and the power factor.	7M
		the new power factor.	7 111
_		OR	
8.	a)	Draw the phasor diagram of 3-phase synchronous motor. Explain the effect of	
		(i) change in excitation if load is constant (ii) change of load if excitation is	7M
	L)	constant	7 111
	b)	Why synchronous motor is not a self-starting? Explain the starting methods of synchronous motors?	7M
		UNIT–V	
9.		Show that a single phase winding when excited by a single phase supply produce two equal and opposite revolving fields.	14M
		OR	
10.	a)	Write short notes on synchronous induction motor.	7M
	b)	Explain the role of compensating winding in the operation of AC series motor.	7M

Hall	Tick	et Number :	
Code:		~52 R-14	
Coue.		.Tech. I Semester Supplementary Examinations Nov/Dec 2017	
		Environmental Science	
May	110	(Electrical and Electronics Engineering) Irks: 70 Time: 3 Ho	
		Irks: 70 er all five units by choosing one question from each unit (5 x 14 = 70 Marks) ********	DUIS
		UNIT–I	
1.	a)	Explain the scope and importance of Environmental Studies?	7M
	b)	Discuss the need for public awareness of environment?	7M
		OR	
2.	a)	Describe the various parts of the Environment?	7M
	b)	Why it is important for people to know about the environment?	7M
0	-)	UNIT-II	
3.	a) L	Explain the role of an individual in the conservation of natural resources?	7M
	b)	Compare the features and effects of use of renewable and nonrenewable resources?	7M
		OR	
4.		What is the difference between renewable and nonrenewable energy resources? Explain the role of alternate energy sources?	14M
		UNIT–III	
5.	a)	What is an ecosystem? Explain the structure and function of an ecosystem?	7M
	b)	Explain the characteristics of a desert ecosystem?	7M
		OR	
6.	a)	Explain the values of a biodiversity?	7M
	b)	What is a hotspot biodiversity?	7M
7	-)		
7.	a)	What are the causes and effects of Air pollution?	7M
	b)	Explain the methods of control of noise pollution?	7M
0	-)	OR Or an and the second	
8.	a)	Summarize the soil pollution?	7M
	b)	What are the causes and effects of Marine pollution?	7M
9.	a)	UNIT-V Explain in detail about various rain water harvesting method?	7M
5.	a) b)	What are the causes and effects of Acid rains and Ozone layer depletion?	7M
	5)	OR	7 1 1 1
10.	a)	Discuss the salient features of Water (Prevention and control of pollution) act-1974?	7M
.0.	b)	What is the impact on environment due to population growth?	7M
	~)		

	III B.	Tech. I Semester Supplementary Examinations Nov/Dec 2017 Linear and Digital Integrated Circuits Applications
		(Electrical and Electronics Engineering)
		Time: 3 Hours er all five units by choosing one question from each unit (5 x 14 = 70 Marks) ********
		UNIT–I
1.	a)	List the non ideal dc characteristics of an op-amp.
	b)	Define slew rate. What causes the slew rate?
		OR
2.	a)	Explain the difference between the integrator and differentiator and give one application of each.
	b)	Draw the characteristics of an ideal comparator and that of a commercially available comparator.
		UNIT–II
3.	a)	Draw and explain the functional diagram of a 555 timer
	b)	Discuss some applications of timer in monostable mode.
		OR
4.		List and explain the applications of PLL
		UNIT–III
5.	a)	Why is an inverted R-2R ladder network DAC better than R-2R ladder DAC?
	b)	Describe the various types of electronic switches used in D/A converter.
		OR
6.	a)	Explain the operation of dual-slope ADC.
	b)	List the various A/D conversion techniques.
_	、	UNIT-IV
7.	a)	Write short note on MOS transistors.
	b)	Draw and explain the circuit of two input CMOS NAND gate.
		OR
8.	a)	What is transition time? How is it differing from propagation time?
	b)	Explain the difference between static and dynamic power consumption.
0		UNIT-V
9.	a)	Implement the following function using 3:8 Decoder $F_1=(A,B,C) = m(0,1,4,5,7)$
	b)	Write a short note on priority encoder.
		OR
10.	a)	Explain the design procedure of combinational circuit.
	b)	What is the necessity of tri state buffers?

		Dage 1 of 1

Hall Ticket Number :

Code: 4G359

R-14

Hall	Tick	et Number :								
Code	e: 4 G	R-14								
	III B	.Tech. I Semester Supplementary Examinations Nov/Dec 2017								
		Power Electronics (Electrical and Electronics Engineering)								
Max	. Mo	arks: 70 Time: 3 Hou	Jrs							
A	۹nsw	ver all five units by choosing one question from each unit (5 x 14 = 70 Marks)								
		UNIT–I								
1.	a)	Draw the turn off characteristic of an SCR and explain the mechanism of turn off.	7M							
	b)	b) Explain the switching characteristics of power MOSFET.								
		OR								
2.	a)	What are the various turn on methods for SCR? Explain them in brief with								
		circuit diagram and relevant waveforms.	7M							
	b)	What is the necessity of connecting SCRs in series? What are the problems associated with series operation of SCRs? How they are eliminated?	7M							
		UNIT-II								
3.	a)	Explain the working of Resistance triggering circuit for SCR with circuit diagram and waveforms. What is its limitation?								
	b)	Explain working of the over voltage protecting device Metal Oxide Varistor with circuit diagram and characteristic								
		OR								
4.	a)	An SCR has a maximum 'di/dt' rating of 15A/µs. It is operated from a 150 V supply. What is the minimum value of load inductance that will protect the device?								
	b)	Explain 'di/dt' protection of SCR with relevant circuit diagram	7M							
		UNIT-III								
5.	a)	A single phase half controlled bridge converter is used to charge a battery. A resistance is connected in series with the battery. Draw the waveform of the load voltage and load current. Derive expression for the average value of charging current of the battery	7M							
	b)	Calculate the average output voltage of a three phase three pulse converter operating with a firing angle of /6 and connected to a three phase ac supply of 400V (line to line), 50 Hz. The load current is assumed to be continuous.	7M							
		OR								
6.	a)	Discuss the effect of source inductance in the performance of of a single phase fully controlled full wave bridge rectifier.	7M							
	b)	Explain the working of a three phase dual converter in circulating current mode with relevant circuit diagram and waveforms.	7M							

UNIT-IV

7.	a)	A step-up chopper with a pulse width of $150\mu s$ is operating on 220V dc supply. Compute the load voltage if the blocking period of the device is 40 μs .	7M					
	b)	Explain the current limit control strategy used for chopper.	7M					
		OR						
8.	a)	Derive the expression for average load voltage and current for a step down dc chopper feeding RLE load for continuous load current operation when it is operating on Time Ratio Control strategy.						
	b)	Explain the operation of four quadrant dc chopper with neat circuit diagram and waveforms.	7M					
9.	a)	How is output voltage controlled for inverter using pulse width modulation techniques? Explain with circuit diagram and relevant waveforms.	7M					
	b)	Explain the operation of single phase parallel inverter with relevant circuit diagram and waveforms. What are its limitations?	7M					
		OR						
10.	a)	Derive an expression for the output current in terms of source voltage, load impedance and firing angle for a single phase ac voltage controller with RL load.	7M					
	b)	A single phase to single phase center-tapped cyclo converter is delivering power to a resistive load. The supply transformer has the turn rationof 1:1:1. The frequency ratio is $f_0/f_s = 1/5$. The firing angle for all the thyristor are the same. Sketch the time variation of the following waveforms for $=30^{\circ}$.	71.4					
		i. supply voltage ii. Output current iii. Supply current	7M					

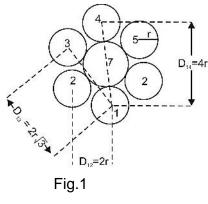
Hall Ticket Number :							
	I		l				R-14

Code: 4G252

III B.Tech. I Semester Supplementary Examinations Nov/Dec 2017

Transmission of Electric Power

(Electrical and Electronics Engineering)


Max. Marks: 70

Time: 3 Hours

Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)

- a) Develop an expression for the inductance of a single phase transmission line taking into account the internal flux linkages. Assume the conductors are solid. 7M
 - b) Find geometric mean radius of a stranded conductor having 7 identical strands each of radius r and is shown in Fig.1. Also find the ratio of GMR to overall conductor radius. Comment on the results .

OR

- 2. a) Derive an expression for electrical potential and hence deduce the formula for capacitance for the following cases:
 - i) Single phase 2-conductor line
 - ii) 3-phase unsymmetrical spacing, but transposed. 7M
 - b) Explain skin and proximity effects on transmission line.

U	IT		
_			

- 3. a) What is a nominal-circuit representation and Find ABCD constants for nominal-T circuit of a transmission line?
 - b) A balanced 3-phase load of 30 MW is supplied at 132 kV, 50Hz and 0.85 p.f lag by means of a transmission line. The series impedance of a single conductor is (20+j40) ohms and the total phase-neutral admittance is 315×10^{-6} mhos. Use nominal π to determine (i) A, B, C, D constants of the line, (ii) V_s and (iii) regulation of the line.

OR

A three-phase, 50 Hz, 180 km long transmission line has three conductors each of 0.6 cm radius, spaced at the corners of an equilateral triangle of side 3 m. The resistance of each conductor is 0.2 ohms per km and the line delivers 20 MVA at 110 kV and at a lagging p.f. of 0.9. Determine (i) ABCD constants (ii) sending-end voltage and current (iii) efficiency and regulation.

7M

UNIT–III

- a) An over Head line has a span of 200m between level supports. The conductor diameter is 4cm and weights 0.65kg/met the allowable tension is 550kg. Calculate maximum sag
 - b) A 3- Phase line has a conductor diameter of 1.6 cm and spaced equilaterally 2.5m apart. If the dielectric strength of air is 30KV/cm (peak) determine the distruptive critical voltage at which corona will occur. Take air density factor=0.96 and irregularity factor =0.94.

OR

- 6. a) Explain different types of insulators and Discuss various methods for improving the string efficiency in a string of insulators.
 - b) A three-phase 66KV transmission line is carried by strings of 5 suspension insulators. The capacity of each unit insulator to the capacity relative to earth is 4:1. Calculate the potential across each unit and the string efficiency. Assume that there is no leakage.

UNIT–IV

- 7. a) Derive reflection and refraction coefficient of transmission line when terminated through a resistance.
 - b) An overhead line has a surge impedance of 450 Ω . A surge voltage V= 250(e^{0.05t} -e^{-t}) kV, where t is in µsec, travels along the line. The termination of the line is connected to two parallel overhead line transformer feeders. The surge impedance of the feeder is 350 Ω . These two transformers are protected by surge diverters each of surge impedance being 40 Ω . Determine the maximum voltage which would initially appear across the feeder end windings of each transformer due to the surge. Assume the transformer to have infinite surge impedance.

OR

- 8. a) Discuss the behavior of a travelling wave when it reaches the end of short circuited line. Draw diagrams to show voltage and current of the line before and after the wave reaches the end .
 - b) A 500 kV surge travels on an overhead line of surge impedance 400 Ω towards its junction with a cable which has a surge impedance of 40 Ω . Find (i) transmitted voltage and current (ii) reflected voltage and current.

UNIT–V

- 9. a) Find expressions for capacitance, insulation resistance and dielectric stress of a single core cable.
 - b) Single core, lead covered cable is to be designed for 66 kV to earth. Its conductor radius is 10 mm and its three insulating materials A, B, and C have relative permittivity of 6, 5, and 4 respectively and the corresponding maximum permissible stress of 4.0, 3.0, and 2.0 kV/ mm respectively. Find the maximum diameter of the lead sheath.

7M

OR

- 10. a) Draw the cross section of a 3-core belted cable. Discuss the function of each part. 7M
 - b) Discuss the methods of grading of cables .Why are they not used generally. 7M