L	па	Il Ticket Number :	
	Co	de: 5G354 R-15	
		III B.Tech. I Semester Regular Examinations Nov/Dec 2017	
		Antennas and Wave Propagation	
		(Electronics and Communication Engineering)	
	-	Time: 3 Hours Iswer all five units by choosing one question from each unit (5 x 14 = 70 Marks)	
	AI		
		UNIT-I	
	a)	Distinguish between 'directivity' and 'gain' of an antenna. Derive expressions for both.	-
	b)	Find the directivity of a Half wave dipole antenna.	-
	、	OR	
•	a)	Explain the term radiation resistance of a antenna. Calculate the radiation resistance of an antenna in free space having wavelength 10 mm and length 1 cm.	7
	b)	Derive the reciprocity theorem for antennas. Show that the transmitting and receiving radiation patterns of an antenna are equal.	-
		UNIT-II	
	a)	What is broadside array? Find the width of principle lobe for n-element uniform broadside array.	-
	b)	Explain the importance of binomial array. How can this produce pattern without secondary lobes?	-
	2)	OR	
		Four isotropic sources are places symmetrically along the z-axis a distance 'd' apart design a	
		binomial array, find the :	
		(i) Normalized excitation coefficients	
		(ii) Array factor (iii) Angels in degree where the array factor nulls occur when $d = 33/4$	14
		(iii) Angels in degree where the array factor nulls occur when d = $3\lambda/4$.	14
	a)	UNIT–III Describe and discuss the principle of operation of parabolic reflector antenna	-
•	a) b)	Describe and discuss the principle of operation of parabolic reflector antenna	-
	a) b)		
	, ,	Describe and discuss the principle of operation of parabolic reflector antenna A square horn is to have a gain of 13dB at 10GHz frequency. Determine the horn mouth dimension assuming an aperture efficiency of 0.6. State the approximations made. OR	
	, ,	Describe and discuss the principle of operation of parabolic reflector antenna A square horn is to have a gain of 13dB at 10GHz frequency. Determine the horn mouth dimension assuming an aperture efficiency of 0.6. State the approximations made. OR With the help of a neat diagram, describe the cassegrain method of feeding a paraboloid reflector.	-
	b)	Describe and discuss the principle of operation of parabolic reflector antenna A square horn is to have a gain of 13dB at 10GHz frequency. Determine the horn mouth dimension assuming an aperture efficiency of 0.6. State the approximations made. OR With the help of a neat diagram, describe the cassegrain method of feeding a paraboloid reflector. Compare axial and normal mode helical antennas.	-
	b) a) b)	Describe and discuss the principle of operation of parabolic reflector antenna A square horn is to have a gain of 13dB at 10GHz frequency. Determine the horn mouth dimension assuming an aperture efficiency of 0.6. State the approximations made. OR With the help of a neat diagram, describe the cassegrain method of feeding a paraboloid reflector. Compare axial and normal mode helical antennas. UNIT-IV	
	b) a)	Describe and discuss the principle of operation of parabolic reflector antenna A square horn is to have a gain of 13dB at 10GHz frequency. Determine the horn mouth dimension assuming an aperture efficiency of 0.6. State the approximations made. OR With the help of a neat diagram, describe the cassegrain method of feeding a paraboloid reflector. Compare axial and normal mode helical antennas. UNIT-IV Discuss the ground wave propagation. What is the angle of tilt and how does it effect the field	-
	b) a) b) a)	Describe and discuss the principle of operation of parabolic reflector antenna A square horn is to have a gain of 13dB at 10GHz frequency. Determine the horn mouth dimension assuming an aperture efficiency of 0.6. State the approximations made. OR With the help of a neat diagram, describe the cassegrain method of feeding a paraboloid reflector. Compare axial and normal mode helical antennas. UNIT-IV Discuss the ground wave propagation. What is the angle of tilt and how does it effect the field strength received at a distance from the transmitter?	-
	b) a) b)	Describe and discuss the principle of operation of parabolic reflector antenna A square horn is to have a gain of 13dB at 10GHz frequency. Determine the horn mouth dimension assuming an aperture efficiency of 0.6. State the approximations made. OR With the help of a neat diagram, describe the cassegrain method of feeding a paraboloid reflector. Compare axial and normal mode helical antennas. UNIT-IV Discuss the ground wave propagation. What is the angle of tilt and how does it effect the field	
	b) a) b) a)	Describe and discuss the principle of operation of parabolic reflector antenna A square horn is to have a gain of 13dB at 10GHz frequency. Determine the horn mouth dimension assuming an aperture efficiency of 0.6. State the approximations made. OR With the help of a neat diagram, describe the cassegrain method of feeding a paraboloid reflector. Compare axial and normal mode helical antennas. UNIT-IV Discuss the ground wave propagation. What is the angle of tilt and how does it effect the field strength received at a distance from the transmitter? Obtain the expression of radius of curvature of ray path in terms of rate of change of permittivity with height. OR	
	b) a) b) a)	Describe and discuss the principle of operation of parabolic reflector antenna A square horn is to have a gain of 13dB at 10GHz frequency. Determine the horn mouth dimension assuming an aperture efficiency of 0.6. State the approximations made. OR With the help of a neat diagram, describe the cassegrain method of feeding a paraboloid reflector. Compare axial and normal mode helical antennas. UNIT-IV Discuss the ground wave propagation. What is the angle of tilt and how does it effect the field strength received at a distance from the transmitter? Obtain the expression of radius of curvature of ray path in terms of rate of change of permittivity with height. OR Mention the different modes of radio wave propagation. What do you mean by space wave?	-
	 b) a) b) a) b) a) a) 	Describe and discuss the principle of operation of parabolic reflector antenna A square horn is to have a gain of 13dB at 10GHz frequency. Determine the horn mouth dimension assuming an aperture efficiency of 0.6. State the approximations made. OR With the help of a neat diagram, describe the cassegrain method of feeding a paraboloid reflector. Compare axial and normal mode helical antennas. UNIT-IV Discuss the ground wave propagation. What is the angle of tilt and how does it effect the field strength received at a distance from the transmitter? Obtain the expression of radius of curvature of ray path in terms of rate of change of permittivity with height. OR Mention the different modes of radio wave propagation. What do you mean by space wave? Where are these waves used?	-
	b) a) b) a) b)	Describe and discuss the principle of operation of parabolic reflector antenna A square horn is to have a gain of 13dB at 10GHz frequency. Determine the horn mouth dimension assuming an aperture efficiency of 0.6. State the approximations made. OR With the help of a neat diagram, describe the cassegrain method of feeding a paraboloid reflector. Compare axial and normal mode helical antennas. UNIT-IV Discuss the ground wave propagation. What is the angle of tilt and how does it effect the field strength received at a distance from the transmitter? Obtain the expression of radius of curvature of ray path in terms of rate of change of permittivity with height. OR Mention the different modes of radio wave propagation. What do you mean by space wave? Where are these waves used? Discuss the propagation characteristics of radio waves from HF to microwave stating the	-
	 b) a) b) a) b) a) a) 	Describe and discuss the principle of operation of parabolic reflector antenna A square horn is to have a gain of 13dB at 10GHz frequency. Determine the horn mouth dimension assuming an aperture efficiency of 0.6. State the approximations made. OR With the help of a neat diagram, describe the cassegrain method of feeding a paraboloid reflector. Compare axial and normal mode helical antennas. UNIT-IV Discuss the ground wave propagation. What is the angle of tilt and how does it effect the field strength received at a distance from the transmitter? Obtain the expression of radius of curvature of ray path in terms of rate of change of permittivity with height. OR Mention the different modes of radio wave propagation. What do you mean by space wave? Where are these waves used? Discuss the propagation characteristics of radio waves from HF to microwave stating the various factors which influence propagation.	
	 b) a) b) a) b) a) a) 	Describe and discuss the principle of operation of parabolic reflector antenna A square horn is to have a gain of 13dB at 10GHz frequency. Determine the horn mouth dimension assuming an aperture efficiency of 0.6. State the approximations made. OR With the help of a neat diagram, describe the cassegrain method of feeding a paraboloid reflector. Compare axial and normal mode helical antennas. UNIT-IV Discuss the ground wave propagation. What is the angle of tilt and how does it effect the field strength received at a distance from the transmitter? Obtain the expression of radius of curvature of ray path in terms of rate of change of permittivity with height. OR Mention the different modes of radio wave propagation. What do you mean by space wave? Where are these waves used? Discuss the propagation characteristics of radio waves from HF to microwave stating the	-
	b) a) b) a) b) a) b)	Describe and discuss the principle of operation of parabolic reflector antenna A square horn is to have a gain of 13dB at 10GHz frequency. Determine the horn mouth dimension assuming an aperture efficiency of 0.6. State the approximations made. OR With the help of a neat diagram, describe the cassegrain method of feeding a paraboloid reflector. Compare axial and normal mode helical antennas. UNIT-IV Discuss the ground wave propagation. What is the angle of tilt and how does it effect the field strength received at a distance from the transmitter? Obtain the expression of radius of curvature of ray path in terms of rate of change of permittivity with height. OR Mention the different modes of radio wave propagation. What do you mean by space wave? Where are these waves used? Discuss the propagation characteristics of radio waves from HF to microwave stating the various factors which influence propagation.	-
	 b) a) b) a) b) a) b) a) a) 	Describe and discuss the principle of operation of parabolic reflector antenna A square horn is to have a gain of 13dB at 10GHz frequency. Determine the horn mouth dimension assuming an aperture efficiency of 0.6. State the approximations made. OR With the help of a neat diagram, describe the cassegrain method of feeding a paraboloid reflector. Compare axial and normal mode helical antennas. UNIT-IV Discuss the ground wave propagation. What is the angle of tilt and how does it effect the field strength received at a distance from the transmitter? Obtain the expression of radius of curvature of ray path in terms of rate of change of permittivity with height. OR Mention the different modes of radio wave propagation. What do you mean by space wave? Where are these waves used? Discuss the propagation characteristics of radio waves from HF to microwave stating the various factors which influence propagation. UNIT-IV What is super refraction? Explain its use in long range propagation.	
	 b) a) b) a) b) a) b) a) a) 	Describe and discuss the principle of operation of parabolic reflector antenna A square horn is to have a gain of 13dB at 10GHz frequency. Determine the horn mouth dimension assuming an aperture efficiency of 0.6. State the approximations made. OR With the help of a neat diagram, describe the cassegrain method of feeding a paraboloid reflector. Compare axial and normal mode helical antennas. UNIT-IV Discuss the ground wave propagation. What is the angle of tilt and how does it effect the field strength received at a distance from the transmitter? Obtain the expression of radius of curvature of ray path in terms of rate of change of permittivity with height. OR Mention the different modes of radio wave propagation. What do you mean by space wave? Where are these waves used? Discuss the propagation characteristics of radio waves from HF to microwave stating the various factors which influence propagation. UNIT-IV What is super refraction? Explain its use in long range propagation.	-

Hall Tick	et Number :												Ъ
Code: 5G	352	<u>. </u>	<u> </u>									R-15	
	III B.Tech. I	Seme	ester R	egu	ılar	Exai	mina	atio	ns N	lov/	Dec 2	017	
			С	ont	rol S	Syste	ems	;					
	(Ele	ectror	nics and	d Co	mm	iunic	atio	n En	gine	erin	g)		
Max. Ma	ırks: 70										-	Time: 3 Hours	5
Answer (all five units b	by cho	oosing	one	que ***		n fror	n ec	hod	unit	(5x14	= 70 Marks)	
						UN	IT–I						
1. a)	Obtain the t	ransfei	r functio	n of a	a fiel	d cor	ntrolle	d D0	C mc	otor?			7M
b)	Write down	Mason	n's gain f	formu	ula a	nd e>	cplair	n eac	h ter	m			7M
						OR	2						
2. a)	Consider the	e netw	ork of fi	g 1, V	Ve s	hall c	obtair	n the	tran	sfer f	unction	$rac{Y(s)}{U(s)}$ of the	
	electrical ne	twork											
		+		T	R)	۲	-					7M
		20	(٢)	ZR	2	•			9) 1 1	ult.		

b) For the system represented by the following equations, Find the transfer function $\frac{X(s)}{U(s)}$ by signal flow graph technique

$$x = x_{1} + a_{3}x$$

$$X_{1} = - x_{1} + x_{2} + a_{2}u$$

$$X_{2} = - x_{2} + a_{2}u$$
UNIT-II

3. a) The closed loop transfer function of a system is given by

$$\frac{C(s)}{R(s)} = \frac{6(S+3)}{(S+8)(S^2+4S+8)}$$
7M

b) Given the open loop transfer of a servo system with unity feedback is

$$G(s) = \frac{10}{S(0.1S+1)}$$
. Evaluate the dynamic error using the dynamic error

coefficients when the system is subjected to the input $r(t) = A_0 + A_1 + \frac{A_2}{2}t^2$ 7M

OR

4. Sketch the root loci for the closed loop control system with

$$G(s) = \frac{K}{S(S+1)(S^2 + 4S + 5)}, H(S) = 1$$
14M

Page 1 of 2

UNIT-III

		***	7M					
		$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -0.5 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} $ u is controllable or not						
	b)	Check the system represented by						
10.	a)	State the solution of linear state equations	7M					
		OR						
	b)	State the transition matrix and its properties	7M					
		$\begin{bmatrix} -12 & -7 & -6 \end{bmatrix}$	7M					
9.	a)	Diagonalize the matrix A = $\begin{bmatrix} 0 & 1 & 0 \\ 3 & 0 & 2 \\ -12 & -7 & -6 \end{bmatrix}$						
		$K_a = 10$, phase margin 35 degrees UNIT–V	14111					
		compensator to meet the following specifications. Acceleration error constants	14M					
8.		A unity feedback system has OLTF G_f(s)= $\frac{K}{S^2(1+0.2S)}$, Design a lead						
		OR						
	b)	Explain the procedure for design of PID controller	7M					
7.	a)	Write the differences between lead and lag compensator	7M					
	2)		,					
0.	a) b)	Explain hydrust enterion Explain how stability can be assessed from Bode plot	7M					
6.	a)	OR Explain Nyquist Criterion	7M					
		determine these from the gain margin and phase margin	14M					
5.		Sketch the bode plot for the transfer function $G(S) = \frac{200(S+2)}{S(S^2 + 10S + 100)}$ and						

	Hal	I Ticket Number :	_
ſ	`oda	e: 5G453	
		III B.Tech. I Semester Regular Examinations Nov/Dec 2017 Computer System Architecture (Electronics and Communication Engineering) (Marks: 70 Time: 3 Hours	
	-	Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)	
	,		
1.	a)	Perform the arithmetic operations $(+42) + (-13)$ and $(-42) - (-13)$ in binary using signed 2's complement representation for negative numbers.	7N
	b)	Explain in brief about the performance of a computer system.	7N
с С		OR Evaluin the basic operational concepts of a computer system	7N
2.	a) b)	Explain the basic operational concepts of a computer system.	7 10
	b)	Convert the following decimal numbers to the bases indicated. i. 7562 to octal ii. 1938 to hexadecimal iii. 17 to binary	7M
		UNIT-II	7 10
3.	a)	Describe in brief various Shift Micro-operations.	7N
	b)	Explain in brief different basic computer instruction formats.	7N
		OR	
4.	a)	Describe in brief various Logic Micro-operations.	7N
	b)	Explain in detail different memory reference instructions.	7N
		UNIT–III	
5.	a)	Hardwired control unit is faster than micro programmed control unit. Justify this statement.	7N
	b)	Draw and explain sequential circuit binary multiplier.	7N
6.	a)	OR Explain the variety of techniques available for sequencing of microinstructions based	
0.	,	on the format of the address information in the microinstruction.	7M
	b)	Draw and explain the circuit arrangement for binary division.	7N
7.		UNIT-IV What are the different types of Mapping Techniques used in the usage of Cache	
1.		Memory? Explain.	14N
8.		What are the different kinds of I/O communication techniques? Compare and contrast	14N
•		UNIT-V	
9.	a)	What is meant by instruction pipeline? Explain four segment Instruction Pipeline.	7N
	b)	Explain in detail the inter processor arbitration.	7M
		OR	
0.	a)	Give the timing diagram of instruction pipeline.	7M
	b)	Explain system bus structure for multiprocessors with a neat sketch.	7M

	Hall	Ticket Number :											Г			1
	Coc	de: 5G351	J									l		R-1	5	
		III B.Tech. I S	Seme	ster	Reg	Jula	r Exc	ami	nati	ons	Nov	/Dec	c 20	17		
				Digi	-											
		•	ctroni	cs ar	nd C	Comi	mun	icat	ion E	Engin	eerii	ng)				
		x. Marks: 70 swer all five units b	y choo	osing	g one			on fr	om e	each	ı unit	(5 x		me: 3 = 70 M		

1.	a)	Describe basic wor	kina nr	incinl				ial P	مالع	Code		dulatio	n (E		with	
	u)	necessary block diag	• .	nop		Dint	STOTIC		uise	oout	, 10100	aulatic			vvicii	8M
	b)	What are the advant	ages of	digit	al co	mmu		ions								6M
2.	a)	What are the drawb eliminated in Adaptiv					•	DM)?	P Des	cribe	how	these	draw	v backs	are	8M
	b)	Determine maximur				•		that	sam	oles a	at 40	0 Hz	sinus	soid wit	th a	OIVI
	~)	sampling rate of (i)	8 kHz	and	(ii) 1	6 k	lz w	hen	no p	ost re	cons	tructic	on filt	er is u	sed.	
		(iii) Repeat above quantization noise is				•	•							l assur	ning	6M
		quantization noise is	uniion			JNIT-	•		10 50	ampin	ig ne	quenc	,у.			OIVI
3.	a)	What are the requir	ements	of b				al rec	eive	? De	rive a	an equ	uatior	n for ou	Itput	
	,	Signal to Noise Ration					•					•			·	8M
	b)	Derive an equation f	or prob	ability	/ of e	rror f		n inte	grate	and	dump	recei	ver.			6M
4.	2)	What is correlator?	Drovo	that	the e			ho o	orrol	otor i			tho	outout	of o	
4.	a)	What is correlator? matched filter receiv		เกลเ	line o	ուրս		ine c	onei		s san	ne as	lne	ουιρυι	ora	8M
	b)	Calculate the probat	oility of	error	for a	mate	ched	filter	recei	iver?						6M
					U	NIT-	-111									
5.	a)	Describe the genera	tion and	d coh	erent	t dete	ectior	n of A	mpli	tude S	Shift k	Keying	J (ASI	K) signa	al.	8M
	b)	Derive an equation f	or prob	ability	/ of e	rror i		K sy	stem	•						6M
6.	a)	Describe the genera	tion and	d dete	ection	n of C	OR Duad	ratur	e Pha	ase Sl	hift K	evina	(OPS	SK) sian	al	8M
0.	b)	Derive an equation f										oynig		int) olgi		6M
	,	·	•	,		NIT-			,							
7.	a)	What is entropy? Sta	ate and	prov	e the	prop	ertie	s of e	entro	oy.						8M
	b)	A black and white T	-						•					•		
		line consists of 525 and picturs are repe	-								•		•			
		conveyed by a TV se				00		0001	iu. U	alouio			lugo	monne		6M
							OR									
8.		The 5 symbols {s ₀ , occurrences are {0.			-		-						-			
		probability of combi				•							• • •	•		
		combined symbol a		•					code	effic	iency	and	varia	ince of	the	
		constructed codes.	Jomme	nt on				ed.								14M
9.	a)	A generator polynor	nial of s	a (7 /		INIT-		انه م	- (n	o ³ ⊥ n	<u>т</u>	and fi	ind o	ut the c	ahor	
5.	a)	vectors of the code i					ouc	IS 9(5) — [р і р	, , ,				Joue	8M
	b)	Describe the princip	e of de	code	r for a	а сус	lic co	de.								6M
							OR									
10.		A rate 1/3 convoulti $g_3 = (101)$. Sketch t Trellis diagram; (ii) I	he enco	oder	config	gurat	tion.	(i) Di	raw t	he co	de tre	e, sta	ate di	iagram	and	
		of the encoder.	put		age .	Joqu	51100	.0 1	5110	,			Jacpu	. Joque		14M
						*	**									

Code:	5GA51		R-15								
	III B.Tech. I Semester Regular Ex	aminations Nov/Dec (<u></u>								
	_										
	Managerial Economics a	-									
	(Common to CE,	, ME & ECE)	T 0.11								
	Marks: 70		Time: 3 Hours								
Answ	er all five units by choosing one questi	on from each unif (5 x 14	1 = 70 Marks)								
		— • • 1									
	UNIT-I										
1.	What are the different methods of measu	• •									
	following information, calculate the pri	ice elasticity using percen	tage and arc								
	methods and comment on the nature of the	ne good:									
	$P = 12$; $Q = 10$ and $P_1 = 15$; $Q_1 = 8$.										
		OR									
2.	Briefly discuss the various methods of De	mand forecasting.									
	UNI	T-II									
3.	Define Isoquant and Isocost line. Graphical		nimizina choice								
0.	of inputs. Also graphically show the long-rul	, ,	0								
	epater / teo graphically briow the folig ful	OR									
4.	Define Production Function and write	• • •	ction function								
4.											
	Suppose in the Cobb-Douglas production function, $+ > 1$, what does it imply about the returns to scale? If $+ = 1$ and $+ < 1$, what do they imply?										
			piy <u>r</u>								
	UNI										
5.	Discuss in brief the short-run and long-run										
	market. Why do firms under Monopolistic	market operate with Excess	Capacity?								
		OR									
6.	Briefly discuss the various forms of busin	ness organizations. Write a	short comment								
	on PPP model.										
	UNI	Γ-IV									
7.	Define Capital. What are the different type	es of capital? Elaborate.									
	OR										
8.	What are the different methods of capital		Present Value								
0.	What are the different methods of capital budgeting? Find out the Net Present Value of a project with an initial investment of Rs. 10,000/-; even cash inflow of Rs. 500/-										
	for a period of 2 years with 5% interest rate and zero scrap value.										
~											
9.	What is Balance Sheet? What are the di		e sheet? Chart								
	out assets and liabilities of a firm with suit	•									
		OR									
10.	What are turnover and solvency ratios?	Calculate current ratio from	n the following								
	information:										
	Particulars	Rs.									
	Inventories	50,000									
	Trade receivables 50,000										
	Advance tax 4,000										
	Cash and cash equivalents	30,000									
	Trade payables	1,00,000									
	Short-term borrowings ***	4,000									

Hall Ticket Number :

R-15

Hall ⁻	Tick	et Number :													
Code:	5G3	353			1		1	1	1	1		1	1	F	2-15
		II B.Tech. I A	٩na	log	& D	igit	al Ir	Exai nteg nunic	rate	ed C		uits		2017	
Max. Ar		rks: 70 er all five units	s by a	choc	osing		que *****	****		n ead	ch ur	nit (t	5 x 14		: 3 Hours arks)
1.	a)	Define slew r	ate a	nd C	MRF	Rofa	In OF	UNI P-AM							4M
	b)	Draw the circ								OP-A	MP.				4M
	c)	Implement th		•			•		•						
	0)			0,000	9 090			$-2v_{z}$		•	L				6M
								OF	2						0.11
2.	a)	List the chara	acteri	stics	of ar	n idea	al OP	P-AMI	∍.						4M
	b)	If CMRR of a differential m			P is (60dB	and	the o	comn	non n	node	gain	is 0.5	, calcula	ate the 4M
				,	f Vin						– Vou	t			6M
								UNI	Г—II						
3.	a)	What is a cor	mpar	ator?	' Wha	at are	e the	appli	catio	ns of	com	barat	ors?		4M
	b)	Why normall 0.01µF bypas	-			inal	of 5	55 tir	ner i	s cor	nnect	ed to	o grou	ind thro	ough a 2M
	c)	Design a mo	nosta	able r	nulti-	vibra	tor u	sing	555 t	mer.					8M
								OF							
4.	a)	Explain the E			•		•				al Blo	ocks	of PLI		8M
	b)	Design a tria	ngula	ar wa	ve ge	enera	ator u	sing UNI		MP.					6M
5.	a)	Define fan-in	and	fan-c	out.										4M
	b)	Explain stead	dy Sta	ate E	lectri	cal b	ehav	ior of OF		DS.					10M
6.	a)	Are TTL outp	outs a	ire m	ore c	apat	ole of	sinki	ng ci	urren	t or s	ourci	ng cu	rrent? J	ustify. 4M
	b)	Write short n i. TTL Lo ii. Bipola	ogic												10M

			555					
		UNIT–IV						
7.		What is the full form of VHDL? Write the VHDL code of two input AND gate. Also write the VHDL code of Half Adder using dataflow modeling. Using the above two code write VHDL code of Full adder.	14M					
			1411					
		OR						
8.	a)	Design a full adder using half adder.	5M					
	b)	Write short notes on the followings						
		i. Three state devices						
		ii. Multiplexers						
		iii. ALU	9M					
		UNIT–V						
9.	a)	What are the differences between Latch and Flip Flop?	4M					
	b)	Design a 13 bit counter.	10M					
		OR						
10.	a)	a) Design a shift left SISO register using Flip Flops.						
	b)	Draw the circuit diagram of a Master -slave J - K flip - flop using NAND gates. What is race around condition? How is it eliminated in a Master-slave J-K flip-flop?	10M					
