Hall Ti	icket Number :										Г	
Code:	4GA51	I	J				J	1	1			R-14
III B.Tech. I Semester Regular Examinations November 2016												
Managerial Economics and Financial Analysis (Common to CE, ME and ECE)												
	Aarks: 70											me: 3 Hours
Answer	all five units by c	choosi	ng one	ques *****		from	n ea	ch u	nit (5 x 1	4 =	70 Marks)
					UNI	T–I						
1.	Define Manager	ial Ecc	nomics	? Exp	lain i	ts Na	ature	and	Sco	pe?		
					0	R						
2.	What is Law of [Deman	d? Expla	ain its	ass	umpt	ions	and	exce	eptior	ns?	
					UNI	T—II						
3.	Explain Product	ion fun	ction wit	h sing	gle va	ariab	le?					
					0	R						
4.	What is Break	k-even	analys	is?	Discu	lss	its	obje	ctive	es, a	Issur	mptions and
	importance?											
					UNI	[_]]]						
5.	Elaborate Price	output	determi	natior			ct co	mpet	tition	marl	ket.	
		-			0	R		-				
6.	Explain various	public	sector b	usine	ss or	gani	zatio	ns w	rith s	uitab	le ex	amples?
					UNIT	T–IV						
7.	What is Capital?	P Expla	in variou	IS SOI	urces	of ra	aisin	g cap	oital?	?		
					0	R						
8.	Distinguish betw	-	ayback	peric	od m	etho	d an	d ac	cour	nting	rate	of return in
	capital budgeting	g?										
					1 1	F \/						
0	M/batic lournal		in ito im	norte				aanir		200112	otina	evetor 2
9	What is Journal'	: ⊏xpia	un its im	μοπα	nce i O		UK-K(eepir	iy at	Juour	ung	รุงรเซกา <i>ร</i>
					U	r.						

10 Discuss various liquidity ratios in financial analysis?

Hall Ticket Number :											
----------------------	--	--	--	--	--	--	--	--	--	--	--

Code: 4G651

3.

R-14

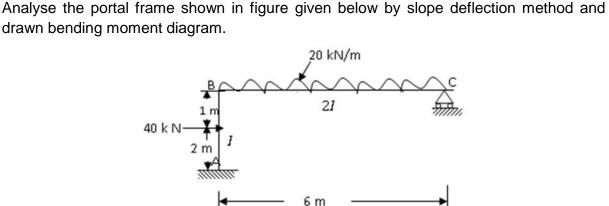
III B.Tech. I Semester Regular Examinations November 2016

Structural Analysis II

(Civil Engineering)

Max. Marks: 70

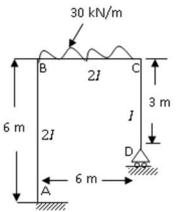
Time: 3 Hours


Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks) ******

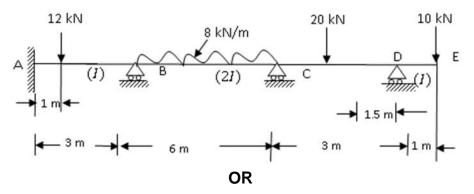
- UNIT-I
- 1. A three-hinged parabolic arch has a span of 50 m. Its supports of abutments A and B are at depth 16 m and 25 m below the crown. The arch carries a concentrated load of 100 kN at a distance of 10 m from crown towards left. Another concentrated load of 200 kN is placed at a distance of 20 m from crown towards right. Calculate the vertical and horizontal reactions.

OR

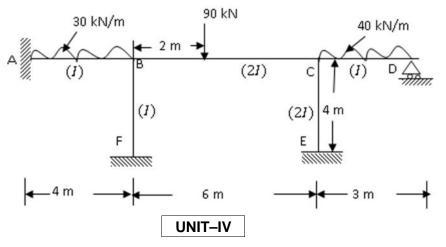
2. A parabolic arch of span 40 m and rise 8 m is subjected to rise of temperature to 30°C. Determine the maximum bending stress at the crown due to rise in temperature. The rib section is 1000-mm Take $E = 2 \times 10^5$ N/mm² and $\alpha = 12 \times 10^{-6}$ per °C.


UNIT-II

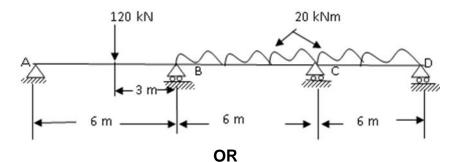
drawn bending moment diagram.

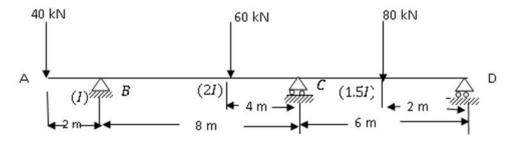

Analyse the frame shown in figure by moment distribution method and drawn bending 4. moment diagram.

OR

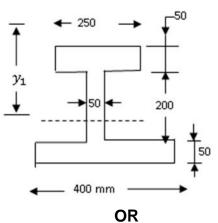


UNIT-III

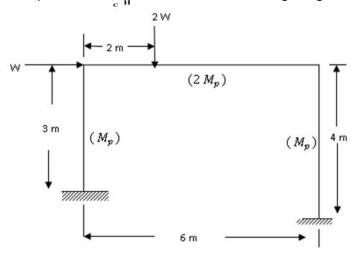

5. Analyse the continuous beam shown in figure given below by Kani's method.


6. Analyse the frame shown in figure given below by Kani's method.

7. Analyse the continuous beam ABCD shown in figure given below by force method. Take EI same throughout.



8. Analyse the continuous beam shown in figure by displacement method.



UNIT–V

9. Determine the shape factor of unequal I – section shown in figure.

10. Determine the collapse load $W_{\frac{1}{2}}$ in the frame shown in figure given below.

Hall 1	Ficke	et Number :	
ode:	: 4 G	652 R-14	
		B.Tech. I Semester Regular Examinations November 2016	
Лах.	Mar	(Civil Engineering) ks: 70 Time: 3 Hou	rs
nswe	r all	five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)	
		UNIT–I	
1.		Write about the various branches of Geology? Explain the Importance of	
		Geology in Civil Engineering point of view.	14
2.		OR Define Weathering? Explain in detail effect of Weathering over the properties	
۷.		of Rocks. What are the principle agents of weathering their impacts?	14
		UNIT–II	
3.		Describe how to identify the Physical properties of minerals?	1
		OR	
4.	a)	Differentiate between Silicate and Non –Silicate Group of minerals?	
	b)	What are the physical properties of the following minerals (i) Asbestos	
		(ii) Hematite	
		UNIT–III	
5.		Define Rock? Explain How to formation of Sedimentary Rocks? Describe the	
		various structures present in these Rocks?	14
6.		OR Define Fault? What is the Classification of Faults? How to Recognize Faults in	
0.		field? What precaution to be taken for this Civil engineering construction?	1
		UNIT–IV	
7.		What is a Ground water? Explain in detail Electrical Resistivity Method?	14
		OR	
8.	a) b)	Explain about various types of Soils and their origin in India What are the Hydrological properties of Rocks?	-
	0)		
9.	a)	UNIT-V Describe in detail the different stages for Investigations of Constructions of	
5.	aj	Dams?	-
	b)	What are the criteria for selection of dam site	-
		OR	
10.		Write an essay on Tunneling?	14

Hall Ticket Number :												
Code: 4G653	_	I			<u></u>		J				1	R-14
III B.Tech	I Se	mes	ster	Reg	gula	r Exe	ami	nati	ons	Nov	/ember	2016
		E	Engi	ine	erin	g Hy	/dro	olog	y- I			
				(C	ivil Ei	ngin	eerir	ng)				
Max. Marks: 70	unite la	مامري	:						.		15,14-	Time: 3 Hours
Answer all five u	inits d	by Ch	ioosi	ng o		Uest *****		om	eacr	1 Unit	(5 X 1 4 =	= 70 Marks j
						UNI	T–I					
1. a) Define precipita	tion. V	Vhat i	is cyc	clonic	prec	ipitati	ion? [Distin	guisł	n betw	veen cold f	front and warm front
b) Differentiate b	etwee	en reo	cordi	ng a	nd no	on - r	ecor	ding	type	of ra	in gauges	6
							OR					
2. a) Explain the pro	ocess	ing o	of rair	nfall	data.							
,		•	•	•				•	type	rain	gauge	with neat sketch
Mentioning its	adva	ntage	es	and	disac		•	;				
						UNI	T–II					
3. a) Define	otion											
i) evapor ii) potentia		no-tr	ansr	oirati	on							
iii) Actual		•	•									
iv) Pan co	•		•									
b) What are the o	compo	onent	ts of	runo	off and	d fac	tors	affec	ting	runof	f?	
							OR					
4. For the given of taken as 0.8	data b	pelow	, De	term	ine tł	ne ev	/apo	trans	spira	tion .	The crop	factor may be
Mon	th 1	Mean	n mo	onthl	y ter	np. [°]	C	Mo	nthly	y %	of sunshi	ne hrs.

Month	Mean monthly temp. °C	Monthly % of sunshine hrs.
Nov	18.0	7.20
Dec	15.0	7.15
Jan	13.5	7.30
Feb	14.5	7.10

UNIT-III

5. What do you understand by unit hydrograph? How is it derived? Explain its use in construction of flood hydrograph resulting from two or more periods of rainfall

OR

- 6. a) What are the factors affecting the runoff from a catchment? Explain any one of them.
 - b) With a neat sketch, explain the various components of a flood hydrograph. Also explain anyone methods of base flow separation

UNIT-IV

 Design a channel in alluvial soil by lacey's theory for the data given. Full supply discharge= 15m3/sec Lacey's soil factor= 1.0 Channel side slope= ½ H: 1V Find also the bed slope of channel.

OR

- 8. a) Describe the different types of aquifers with neat sketches
 - b) "Lacey's conception of design of canal on an alluvial soil is superior to Kennedy's concept". Justify the statement

UNIT–V

- 9. a) Define various irrigation efficiencies used in irrigation system
 - b) Define duty, delta and base period. Obtain the relationship between them

OR

10. The gross commanded area for a distributary is 20000 hectares, 75% of which can be irrigated. The intensity of irrigation for Rabi season is 40% that for Kharif season is 10%. If Kharif period is 4 weeks for rabi and 2.5 weeks for rice, determine he outlet discharge. Outlet factors for rabi and rice may be assumed as 1800 hectares/ cumec and 775 hectares/ cumec. Also calculate delta for each crop.

Than Ticket Nulliber.						P _1/	
Hall Ticket Number :							

Code: 4G654

III B.Tech. I Semester Regular Examinations November 2016 Environmental Engineering–I

(Civil Engineering)

Max. Marks: 70

Time: 3 Hours

Answer all five units by choosing one question from each unit (5 x 14 = 70Marks)

UNIT–I

- 1. a) What is meant by protected water supply? Explain the necessity of protected water supply schemes?
 - b) What are the various demands of water? Explain the factors affecting the demand of water

OR

- 2. a) What is meant by the variations in the rate of demand? What are the effects of these variations on the design of various units of water supply scheme?
 - b) List the various sources of water for a water supply scheme. Compare them with reference suitability, quality, quantity and treatment

UNIT–II

- 3. a) Explain the layout of distribution networks with neat sketches
 - b) Explain the Hardy -Cross method of Method used for pipe network analysis in water distribution system

OR

- 4. a) List out the various sources of water pollution. Explain the causative organisms and impacts of different types water-borne diseases.
 - b) What is indicator of organism of Pathogenic bacteria present in water? Explain the Membrane filter technique with neat sketches

UNIT–III

- 5. a) What is difference between coagulation and flocculation? Explain the chemical reaction of alum with Raw water. Calculate quantity of alum required for treatment of 13 million liters of water per day if dosage of alum 12 ppm.
 - a) What are functions of aeration treatment? Explain the various methods of aeration for water purification

OR

- 6. a) What is difference between detention time and flow through period? Explain the functional principle of clariflocculator with neat sketches
 - b) Design a coagulation cum sedimentation tank with continuous flow for treatment 7 MLD of raw water. Make suitable assumptions if necessary

UNIT–IV

- 7. a) Differentiate between slow sand filter and rapid sand filters
 - a) Explain the different types of chlorination practices with practical examples

OR

- 8. a) Design a rapid sand filters to treat 10 mld of raw water. Calculate the quantity of water required for backwashing. Make suitable assumptions
 - b) Explain the following aspects with reference water treatment
 - (i) Residual chlorine (ii) chloramines (iii) disinfectants

UNIT-V

- 9. a) Explain the principles and precautions to be taken in laying of pipes in the building premises
 - b) What are pipe appurtenances used in water supply plumbing system in Residential buildings

OR

- 10. a) Draw the general layout of water supply system in Multistoried buildings. Mention various components and their functions
 - b) Write short note on detection and prevention of water leakage in buildings.

Code: 4G655

Max. Marks: 70

III B.Tech. I Semester Regular Examinations November 2016

Design and Drawing of Reinforced Concrete Structures

(Civil Engineering)

Time: 3 Hours

1 X 28 = 28 Marks

R-14

use of IS 456:2000, SP16 Design aided charts only and IS:875 (Part 1 & Part 2) books is permitted in the examination hall. *******

PART-A

Answer any one question

1. Design a two way slab for an office floor of size 3.5m x 4.5m with discontinuous and simply supported edges on all the sides with corners prevented from lifting and supporting a service live load of 4KN/m². Adopt M₂₀ grade concrete and Fe₄₁₅ grade steel. Sketch the reinforcement details.

OR

2. Design a rectangular sloped footing for a column of size 350mm x 450mm using 20mm diameter bars to transmit characteristic loads of 600KN as dead load and 400KN as live load to a foundation with safe bearing capacity of 120KN/m². Assume M₂₀ grade concrete and Fe415 grade steel. Draw the reinforcement details.

PART-B

Answer any **Three** questions $3 \times 14 = 42$ Marks Each question carry 14 Marks

- 3. a) What are the assumptions made in the limit state design method? Explain stress block parameters.
 - b) A Tee beam has an effective flange width of 2500mm and depth of flange is 150mm, width of rib is 300mm, effective depth is 800mm. Using M₂₀ grade concrete and Fe₄₁₅ HYSD bars, estimate the area of tension reinforcement required if the section has to resist a design ultimate moment of 1200 KN.m?
- 4. a) Define anchorage and development length.
 - Determine the reinforcement required for a rectangular beam section with the following b) data? Width = 300mm, Depth = 500mm, Factored B.M = 65KN.m, Factored torsional moment = 40KN.m, Factored S.F = 70KN. Use M_{15} grade concrete and Fe₄₁₅ grade steel. 11M
- 5. a) What is meant by slenderness ratio of a compression member and what are its implications?
 - Design the reinforcement in a circular column of 300mm diameter to support a service axial b) load of 800KN. The column has an unsupported length of 3m and is braced against side sway. The column is reinforced with helical ties. Adopt M_{20} grade concrete and Fe_{415} grade steel.
- 6. Estimate the long term deflection of a simply supported beam of size 350mm wide and 500mm effective depth. The span of the beam is 4.5m. The beam is reinforced with 5 bars of 20mm diameter in the tension zone. The external load on the beam is 25KN/m, exclusive of dead load. Use M₂₅ grade concrete and Fe₄₁₅ grade steel. Assume the required data from I.S. 456-2000.

14M

7. a) Compare working stress method and limit state method of design of R.C. Structures. 7M b) 7M

Page 1 of 1

7M

28M

28M

- 7M
- 3M

3M

11M