Hall Ti	icket Number :										Г	
Code:	4GA51	I	J				J	1	1			R-14
	III B.Tech. I Se		-									016
	Manage		conor ommor						And	alysi	İS	
	Aarks: 70											me: 3 Hours
Answer	all five units by c	choosi	ng one	ques *****		from	n ea	ch u	nit (5 x 1	4 =	70 Marks)
					UNI	T–I						
1.	Define Manager	ial Ecc	nomics	? Exp	lain i	ts Na	ature	and	Sco	pe?		
					0	R						
2.	What is Law of [Deman	d? Expla	ain its	ass	umpt	ions	and	exce	eptior	ns?	
					UNI	T—II						
3.	Explain Product	ion fun	ction wit	h sing	gle va	ariab	le?					
					0	R						
4.	What is Break	k-even	analys	is?	Discu	lss	its	obje	ctive	es, a	Issur	nptions and
	importance?											
					UNI	[_]]]						
5.	Elaborate Price	output	determi	natior			ct co	mpet	tition	marl	ket.	
		-			0	R		-				
6.	Explain various	public	sector b	usine	ss or	gani	zatio	ns w	rith s	uitab	le ex	amples?
					UNIT	T–IV						
7.	What is Capital?	P Expla	in variou	IS SOI	urces	of ra	aisin	g cap	oital?	?		
					0	R						
8.	Distinguish betw	-	ayback	peric	od m	etho	d an	d ac	cour	nting	rate	of return in
	capital budgeting	g?										
					1 1	F \/						
0	M/batic lournal		in ito im	norte				aanir		200112	otina	evetor 2
9	What is Journal'	: ⊏xpia	un its im	μοπα	nce i O		UK-K(eepir	iy at	Juour	ung	รุงรเษกา <i>ร</i>
					U	r.						

10 Discuss various liquidity ratios in financial analysis?

Code: 4G551

III B.Tech. I Semester Regular Examinations November 2016

Applied Thermodynamics - II

(Mechanical Engineering)

Max. Marks: 70 Time: 3 Hours Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks) UNIT-I 1. Explain the performance of a Modified Rankine Cycle with the help of a neat T-S a) and schematic diagram. 7M b) Steam is supplied to a steam turbine at pressure of 20 bar and 230°C. It is then expanded isentropically to a pressure of 1 bar. Determine: i) Rankine cycle efficiency ii) specific volume of steam at the end of expansion iii) carnot efficiency between the same temperature limits. 7M OR 2. a) Why the carnot cycle cannot be considered as the theoretical cycle for steam power plants even though its efficiency is maximum? 7M b) In an ideal Rankine cycle, the steam condition at turbine inlet is 20 bar and 350°C. The condenser pressure is 0.08 bar. Determine the cycle efficiency. If the steam flow rate is 2000 kg/hr, what is the power output? 7M UNIT-II 7M 3. a) Explain the working principle of a Babcock& Wilcox boiler with a neat sketch? b) A boiler uses 14 kg of air per kg of fuel. The temperature of the hot gasses inside the chimney is 597° C and the outside air is 17° C. If the draught produced is 26 mm of water. Determine the minimum height of the chimney required. 7M OR Explain the working principle of a Lancashire boiler with a neat sketch? 7M 4. a) b) A chimney has a height of 60 meters. The temperature of air is 27° C. Find the draught in mm of water when the temperature of chimney gasses is such as to 7M cause the mass of these gases discharged in a given time to be maximum. **UNIT-III** 5. a) Derive the condition for maximum discharge through a convergent-Divergent nozzle. 7M b) Find the percentage increase in discharge from a convergent-Divergent nozzle expanding from 8.75 bar dry to 2 bar, when i) the expansion is taking place under thermal equilibrium ii) the steam is in meta stable state during part of its expansion. Take area of the nozzle is 2500 mm². 7M OR 6. a) Explain the function and types of cooling towers? Mention their merits and demerits. 7M b) A gas expands in a convergent-Divergent nozzle from 5 bar to 1.5 bar, the initial temperature being 700°C and the nozzle efficiency is 90%. All the losses take

place after the throat. For 1 kg/s of mass rate of the gas, find the throat and the

exit area. Take n=1.4, R=287 KJ/kg-K.

UNIT–IV

- 7. a) What are the methods of governing a steam turbine? Describe any one method of governing steam turbines?
 - b) At a stage of a Reaction turbine, the rotor diameter is 1.4 m and speed ratio is 0.7. If the blade outlet angle is 20⁰ and the rotor speed is 3000 RPM. Find the blade inlet angle and diagram efficiency. Also find the percentage increase in diagram efficiency and the rotor speed, if the turbine is designed to run at the best theoretical speed.

OR

- 8. a) Explain the term "compounding of a steam turbine". What are the different methods? Explain anyone with a neat sketch.
 - b) A certain stage of a parson's reaction turbine consists of one row of fixed and moving blades. Mean diameter of the blades=680 mm, Speed of the turbine=3000 RPM, mass of steam passing=13.5 kg/s, steam velocity at exit from fixed blades=143.7 m/s, blade outlet angle= 20°. Calculate the power developed in the stage and the gross efficiency assuming carry over coefficient as 0.74 and the efficiency of conversion of heat energy into kinetic energy in the blade channels as 0.92.

UNIT–V

- 9. a) Explain "Heat balance sheet". What important light does it throw on the working of a steam engine?
 - b) A steam engine uses 500 kg of dry saturated steam/hr at a pressure of 20 bar and exhaust takes place at a pressure of 0.2 bar with dryness fraction of 0.78. Find Rankine efficiency and relative efficiency of the engine, if it develops 40 KW at full load.

OR

- 10. a) What are the methods to reduce the cylinder condensation in steam engine? Explain them briefly.
 - b) A double acting steam engine with piston diameter 275 mm, stroke length 650 mm and cut-off 50% of stroke length is supplied steam at a pressure of 7 bar. The back pressure is 1.2 bar. Assuming a diagram factor of 0.75, find indicated power of the engine when it runs at 250 RPM. Also find the mechanical efficiency of the engine if its brake power is 100 KW. Neglect clearance.

7M

7M

7M

7M

7M

7M

	et Number :													Г				
Code: 40	G 552										3				F	R-14		
I	ll B.Tech. I	Sem			-						love	en	nbe	er 20	016			
				-					ine	-								
Max. Ma	arks: 70		(med	inar	nica	i ⊏nč	Jine	ering))				Ti	me:	3 Ho	ours	
	Il five units b	y chơ	oosi	ing c	one	•		n froi	n ec	hor	unit	(5	5 x 1					
					Γ		***** VIT–I											
1 0)	M/bat is frig	tion2		+ ~					о I.	i atifu				vor	and	ai vo		
1. a)	What is fric examples?	suon?	15 1	l a l	oless	ang	orc	urse	r Jl	istiry	you	Ir i	answ	ver	and	give	6M	l
b)	A Conical piv			-							•							
	supports an power lost in											IU	0.	.03,	IIIIC	the	8M	
							OF	ł										
2. a)	How do you	classif	fy clu	utche	s?												2M	l
b)	Single plate maximum to KN/m ² . Oute	orque er dia	deve mete	elope er of	d is the	20 frict	N-m. ion p	Axia plate	al pre is 1	essui .3 ti	re is mes	nc th	ot to e in	exo ner	ceed dian	100 neter		
	determine th	ese di	iame	eters	and	the a	xial f	orce	excre	eted	by the	e s	pring	gs. (µ=0.	25)	12M	
						Ur	IIT–I											
3. a)	Describe pro	ony bra	ake d	dynai	mom												4M	
3. a) b)	The following	g data	refe	er to a	a labo	eter?	, ry ex		nent	with	rope	bre	eak:				4M	
,	The following Diam	g data eter of	refe f the	er to a flyw	a labo heel	eter? orato = 1m	י ry ex ו		nent	with	rope	bre	eak:				4M	
,	The following Diam Diam	g data eter of eter of	refe f the f the	er to a flyw e rope	a labo heel e = 10	eter? orato = 1m 0mm	ry ex າ		nent	with	rope	bre	eak:				4M	
,	The following Diam Diam Dead	g data eter of eter of l weigh	refe f the f the ht of	er to a flyw rope the t	a labo heel e = 10 preak	eter? orato = 1m 0mm x = 50	ry ex n Okg		nent	with	rope	bre	eak:				4M	
,	The following Diam Diam Dead Spee	g data eter of eter of	refe f the f the ht of ne er	er to a flyw rope the b ngine	a labo heel e = 10 break e = 18	eter? orato = 1n 0mm x = 50 30rpr	ry ex n Okg n		nentv	with	rope	bre	eak:				4M]
,	The following Diam Diam Dead Spee Sprin	g data eter of eter of l weigh d of th	refe f the f the ht of ne er ance	er to a e flyw e rope the k ngine read	a labo heel e = 10 break e = 18 ling=	eter? orato = 1m 0mm < = 50 30rpr 120N	ry ex n Okg n		nent	with	rope	bre	eak:				4M 10M	
,	The following Diam Diam Dead Spee Sprin	g data eter of eter of l weigh d of th g bala	refe f the f the ht of ne er ance	er to a e flyw e rope the k ngine read	a labo heel e = 10 break e = 18 ling=	eter? orato = 1m 0mm < = 50 30rpr 120N	ry ex n Okg n	perin	nent	with	rope	bre	eak:					
,	The following Diam Diam Dead Spee Sprin	g data eter of eter of l weigh d of th g bala the po	refe f the f the ht of ne er ance ower	er to a e flyw e rope the k ngine read of th	a labo heel preak = 18 = 18 ling= e eng	eter? orato = 1m 0mm < = 50 30rpr 120N gine?	ry ex) Dkg n I OF	perin					eak:					1
b)	The following Diam Diam Dead Spee Sprin Find	g data eter of eter of l weigh d of th g bala the po mean e auto heels The ro ar ratic e rear mass	refe f the f the f the ht of ne er ance ower b b b b b tatir b of t axle s of t	er to a e flyw e rope the k ngine read of th spin, oile is a mo ng pa the o e and the v	a labo heel = 10 oreak = 18 = 18 ing= e eng trav omen rts o engir the o ehicl	eter? rato = 1m 0mm c = 50 30rpr 120N gine? cessic elling tof i f the he to crank e is	ry ex Dkg n J on ar g alor nertia engi the sha 2050	perin perin ng a ng a ng a back ft rota kg a	rosco curve 2.2 kg ave a c whe ates i and th	ppic p d tra -m ² mor sel is n the	olane ck of and a nent 3.2. e sam entre	s? 12 an of Times of	20 m effec inert he e sens mas	ctive ia of engir se as ss is	dian 1.2 ie ax the 520	neter 5 kg- kis is road) mm	10M	1

5. a) What is the function of the flywheel? How does it differ from that of a governor?

UNIT-III

b) An engine flywheel has a mass of 6.5 tones and the radius of gyration is 2m. If the maximum and minimum speeds are 120 rpm and 118 rpm respectively. Find maximum fluctuation of energy?

OR

- 6. a) What is the function of a governor?
 - b) In a porter governor, the upper and lower arms are each 250mm long and are pivoted on the axis of rotation. The mass of each rotating ball is 3kg and the mass of the sleeve is 20kg. The sleeve is in its lowest position when the arms are inclined at 30[°] to the governor axis. The lift of the sleeve is 36mm. Find the force of friction at the sleeve, if the speed at the moment is falls from the highest position. Also find the range of speed of the governor.

UNIT-IV

- 7. a) Explain the method of balancing of two masses revolving in the same plane?
 - b) A shaft carries four masses A, B, C and D of magnitude 200 kg, 300 kg, 400 kg and 200 kg respectively and revolving at radii 80 mm, 70 mm, 60 mm and 80 mm in planes measured from A at 300 mm, 400 mm and 700 mm. The angles between the cranks measured anticlockwise are A to B 45°, B to C 70° and C to D 120°. The balancing masses are to be placed in planes X and Y. The distance between the planes A and X is 100 mm, between X and Y is 400 mm and between Y and D is 200 mm. If the balancing masses revolve at a radius of 100 mm, find their magnitudes and angular positions.

OR

- 8. a) What do you mean by primary and secondary balance in reciprocating engines?
 - b) An inside cylinder locomotive has its cylinder centre lines 0.7 m apart and has a stroke of 0.6 m. The rotating masses per cylinder are equivalent to 150 kg at the crank pin, and the reciprocating masses per cylinder to 180 kg. The wheel centre lines are 1.5 m apart. The cranks are at right angles. The whole of the rotating and 2/3 of the reciprocating masses are to be balanced by masses placed at a radius of 0.6 m. Find the magnitude and direction of the balancing masses. Find the fluctuation in rail pressure under one wheel, variation of tractive effort and the magnitude of swaying couple at a crank speed of 300 r.p.m.

UNIT-V

- 9. a) What do you mean by whirling of shafts?
 - b) A shaft 50 mm diameter and 3 metres long is simply supported at the ends and carries three loads of 1000 N, 1500 N and 750 N at 1 m, 2 m and 2.5 m from the left support. The Young's modulus for shaft material is 200 GN/m². Find the frequency of transverse vibration.

OR

- 10. a) Define the terms: Vibration Isolation and transmissibility
 - b) A shaft 1.5 m long, supported inflexible bearings at the ends carries two wheels each of 50 kg mass. One wheel is situated at the centre of the shaft and the other at a distance of 375 mm from the centre towards left. The shaft is hollow of external diameter 75 mm and internal diameter 40 mm. The density of the shaft material is 7700 kg/m³ and its modulus of elasticity is 200 GN/m². Find the lowest whirling speed of the shaft, taking into account the mass of the shaft. 10M

10M

4M

10M

10M

4M

6M

8M

4M

10M

4M

Hall T	icke	et Number :	
Code:	4G5	553 R-14	
		B.Tech. I Semester Regular Examinations November 2016	
		Machine Tools	
Max.	Mar	(Mechanical Engineering) ks: 70 Time: 3 Hou	irc
	-	five units by choosing one question from each unit (5 x 14 = 70 Marks)	-

1.		UNIT–I The following observations were made in an orthogonal cutting test with a tool	
1.		of rake angle 10 ⁰	
		The chip thickness ratio = 0.37	
		Horizontal component of cutting force = 1000N	
		Vertical component of cutting force = 1500N	
		From Merchant's theory, Calculate the various component of cutting forces, and the co efficient of friction at the chip tool interface.	14
		OR	-1
2.	a)	Define Tool life? Explain the parameters that control the tool life of single point	
	.,	cutting tool	10
	b)	what are the desirable properties of a cutting tool materials	4
		UNIT–II	
3.		Explain the methods used for the generation of threads in a lathe	14
		OR	
4.	a)	Describe the method of operation of Swiss type automatic lathe, with	40
	L)	application & tool used	10
	b)	How automatic lathes are classified	4
5.		UNIT–III Show with neat sketches the constructional features of a Twist drill and label	
5.		the important features	14
		OR	
6.		Explain compound indexing and differential indexing with neat sketch	14
		UNIT–IV	
7.		Write short notes on	
		a) abrasive types & usage	
		b) types of bond & designation of grinding wheel	14
_		OR	
8.		Describe various Broaching machines used in industry	14
9.		UNIT-V Explain boning and langing process with peat sketch	14
9.		Explain honing and lapping process with neat sketch OR	14
10.	a)	Explain the three types of locators used in fixtures	ε
10.	a) b)	Explain the reason for using a Diamond pin	6
	5)	Explain the reductive doing a Diamona pin	U

Hall	Ticke	et Number :												ſ			
Code	: 4G	554								J			1		R	R-14	
	III	B.Tech. I S	Seme	este	er Re	egul	'ar E	xan	ninc	ntior	ns N	ove	mbe	er 2	016		
			D		gn o						nts-	I					
Mary		100.70		()	Мес	hani	ical	Engi	nee	ring)				т		2110	150
Max. Answe	-	five units by	/ cho	oosii	ng o		Ues ****		from	n ea	chu	init (5 x 1			3 Hoι Λarks	
							U	NIT-I									
1.	a)	Discuss the	steps	invo	olved	in de	sign.										10M
	b)	Why brittle m	nateri	als h	ave l	imite	d app	olicati	ions	in en	ginee	ering	?				4M
								OR	1								
2.	a)	Discuss the	follow	ving ⁻	Theo	ries c	of fail	ure									
		i) Max.	Shea	ar Str	ess t	heory	y ii)	Disto	ortior	n ene	rgy tl	heory	'				6M
	b)	A bolt is sub the yield stu Determine th	rengtl ne dia	h of Imete	the er of t	bolt he b	is 3 olt us	00MF									
		i) Max. N ii) Max. s				-											8M
		.,				, [UN	IIT–II									
3.	a)	Define endu	rance	limit	t? Dis	cuss				ich at	ffect	the ei	ndura	ince	limit	of the	
		material.															7M
	b)	Discuss abo	ut So	derb	erg c	riteria	a.										7M
								OR									
4.	a)	What is stres	ss coi	ncen	tratio	n? A	nd H	ow to	min	imize	it.						7M
	b)	A fuel pump the rod has y bending. The 10 ⁵ cycles. F rod for finite	yield s e end For a	stren uran facto	igth o ce st or of s	f 400 rengt safet	MPa h or t y 2, c	and fatigu deterr	endu ie str mine	iranc engtl the i	e lim n of tl equi	it of 2 he ma	250MI ateria	Pa f	or rev 360M	/ersal Pa at	7M
						Γ	UN	IIT–II	I								
5.	a)	What do you	ı mea	n by	bolt	of un	iform	strer	ngth?	>							4M
	b)	A cylinder he it is held in p the joint leak the bolt, so t	oositio c proc	on by of. Th	/ mea	ans c ectiv	of 12 e dia	bolts mete	.As rofo	oft co cylind	oppei er is	r gasl 300n	ket is nm. F	use	ed to	make	10M
		,						OR									-
6.	a)	What is the s	streng	ath o	f the	rivete	ed joi										2M
	b)	A double rive that in the init 12 mm thick in the two re Tensile stress stress in rive	eted b ner ro . The ows i ss in p ts and	outt jo ows, dian f the olate d pla	oint, i conne neter e wor s = 1 tes =	n whi ects t of riv king 00 M 150	ich th wo 1 vets is stres Pa, \$	ie pito 6 mm s 22 i sses a Shear	n thic mm. are r stre	k pla Dete not to ss in	tes w rmine o exc rivet	rith tw e the ceed s = 7	vo cov pitche the fo 5 MPa	ver p es o ollov a, a	lates f the ving l nd be	each rivets imits: earing	
		by showing a	at lea:	st tw	o vie	WS.										Page 1	12M of 2
																. 46C I	J. L

7. a) Differentiate a key and a cotter?

b) Two steel rods are to be connected by means of a steel sleeve and two steel cotters. The rods are subjected to a tensile load of 40kN. Design the joint. Take permissible stress in tension as 60MPa, in shear as 50MPa and in crushing as 90MPa.

UNIT-IV

OR

- 8. a) Enumerate different types of keys.
 - b) A solid steel machine shaft with safe shear stress of 50MN/m² transmits a torque of 1000NM. Find the shaft diameter. A square key having width equal to ¼ of shaft diameter and length equal to 1.5 times the shaft diameter is used. Find the dimensions of the key and check

The key for its induced shear stress and compressive stresses. Also obtain the factor of safety of the key in shearing and in crushing, allowing an ultimate shear stress of 350MN/m² and the stress for compression is 400 MN/m².

UNIT–V

- 9. a) Distinguish axle and shaft.
 - b) A line shaft is driven by means of a motor is placed vertically below it. A pulley on the shaft is 1.5m in diameter and has belt tension 5.8kN and 1.2kN on tight side and slack side of belt. Both the tensions may be assumed vertically. The pulley is overhanging on the shaft with a distance of 500mm. Find the diameter of shaft the shear stress is limited to 42Mpa.

OR

- 10. a) What is the most commonly used material for shafting?
 - b) A split sleeve coupling is required to transmit 70kW at 180rpm. The permissible stress in the shafts 40MPa. Assuming that the two halves of the coupling are connected by 8 bolts, determine the diameter of the bolts, if the permissible stress for the bolt material is 70MPa and co-efficient of friction between the shaft and split sleeve is 0.3.

2M

12M

4M

2M

10M

12M

|--|

Code: 4G555

III B.Tech. I Semester Regular Examinations November 2016

Heat Transfer

(Mechanical Engineering)

Max. Marks: 70

Time: 3 Hours

R-14

Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)

- 1. a) Derive the Fourier equation in 3D by Cartesian co-ordinate system.
 - b) Asbestos layer of 10mm thickness (k=0.116W/mK) is used as insulation over a boiler wall. Consider an area of 0.5m² and find out the rate of heat flow as well as the heat flux over this area if the temperatures on either side of the insulation are 300°C and 30°C.

OR

- 2. a) Explain the concept of combined heat transfer mechanism with the help of examples.
 - b) Consider a plane wall 2cm thick, with uniformly distributed heat sources (q_g, W/m³) inside its volume; its left and right faces are maintained at temperatures T1 and T2, respectively. Steady state temperature distribution in this wall is given by: T(x)=160-1000x-10⁵x². If q_a=40MW/m³, determine:
 - i. Temperatures T_1 and T_2
- ii. Heat flux at the left face
- iii. Heat flux at the right face iv. Heat flux at the centre of the plate
- **v.** Average temperature of the plate.

UNIT–II

- 3. a) Derive the equation for heat transfer for composite slab.
 - b) A composite wall consists of a 10cm layer of building brick (k=0.7 W/(mC)) and 3 cm thick plaster (k=0.5W/(mC)). An insulation material of k=0.08W/(mC) is to be added to reduce the heat transfer through the wall by 70%. Determine the thickness of the insulating layer.

OR

- 4. a) Explain the criteria for lumped system analysis.
 - b) A steel ball of 5cm diameter initially at a uniform temperature of 450°C is suddenly placed in an environment at 100°C. Heat transfer coefficient h, between the steel ball and the fluid is 10W/(m²K.). For steel, c_p=0.46kJ/(kgK), =7800kg/m³,k=35 W/mK. Calculate the time required for the ball to reach a temperature of 150°C. Also, find the rate of cooling after 1 hr. Show graphically how the temperature of the sphere falls with time.

UNIT-III

- 5. a) Explain the method of Buckingham -theorem and its limitations.
 - b) A refrigerated truck is moving at a speed of 85 km/hr where ambient temperature is 50°C. The body of the truck is of rectangular shape of size 10m(L) x 4m(W) x 3m (H). Assume the boundary layer is turbulent and the wall surface temperature is at 10°C. Neglect heat transfer from vertical front and backside of truck and flow of air is parallel to 10m long side. Calculate heat loss from the four surfaces. For turbulent flow over flat surfaces: Nu=0.036.Re^{0.8}.Pr^{0.33} Average properties of air at 30°C: =1.165kg/m³, Cp=1.005kJ/kgK, v=16.10⁻⁶m²/s, Pr=0.701

OR

- 6. a) Derive the governing equation and its solution by integral method in free convection.
 - b) A furnace door, 1.5m high and 1m wide, is insulated from inside and has an outer surface temperature of 70°C. If the surrounding ambient air is at 30°C, calculate the steady state heat loss from the door.

UNIT–IV

- 7. a) Draw the flux plot and explain different regimes in it.
 - b) A steam condenser consists of a square array of 400 horizontal tubes, each 6mm in diameter. The tubes are exposed to exhaust steam arriving from the turbine at a pressure of 0.1 bar. If the tube surface temperature is maintained at a temperature of 25°C by circulating cold water through the tubes, determine the heat transfer coefficient and the rate at which the steam is condensed per unit length of tubes for the entire array. Assume laminar film condensation and that there are no condensable gases mixed with steam.

OR

- 8. a) Obtain the relation between intensity of radiation and emissive power.
 - b) The net radiation from the surface of two parallel plates maintained at temperatures T1 and T2 is to be reduced by 79 times. Calculate the number of screens to be placed between two surfaces to achieve this reduction in heat exchange, assuming the emissivity of screens as 0.05 and that of surfaces as 0.8.

UNIT–V

- 9. a) Derive an equation for LMTD for counter flow heat exchanger.
 - b) In a double pipe counter flow heat exchanger, 10,000 kg/h of oil (Cp=2.095 kJ/kgK) is cooled from 80°C to 50°C by 8000 kg/h of water entering at 25°C. Determine the area of heat exchanger for an overall u=300 W/(m2K). Take Cp for water as 4.18 kJ/kgK.

OR

- 10. a) Derive NTU-Effectiveness relation for counter flow heat exchanger.
 - b) Consider a heat exchanger for cooling oil which enters at 180°C, and cooling water enters at 25°C. Mass flow rates of oil and water are: 2.5 and 1.2 kg/s, respectively. Area for heat transfer =16m². Specific heat data for oil and water and overall u are given: Cp_{oil}=1900 J/kgK; Cp water=4184 J/kgK;u=285 W/m²K. Calculate outlet temperatures of oil and water for parallel and counter flow HX.
