|--|

Code: 1GA51

R-11 / R-13

III B.Tech. I Semester Regular & Supplementary Examinations Nov/Dec 2015 *Managerial Economics and Financial Analysis* (Common to CE, ME & ECE)

(Common to Ci Max. Marks: 70

Time: 03 Hours

Answer *any five* questions All Questions carry equal marks (14 Marks each)

- Managerial economics is the application of economic theory to business 1. management. Discuss. 14M What is elasticity of demand? Explain price elasticity of demand and its measurements. 14M 2. What is production function? Explain the concept of Cobb-Douglas production function. 3. 14M Critically examine the role of price fixation with reference to different pricing methods 4. 14M 5. Compare and contrast public and private sector organisations? Suggest are the private sector business organizations promoted Indian economy globally 14M 6. From the following data, you are required to calculate: Fixed Expenses ₹ 90000. Variable Cost per unit ₹ 5. Selling Price per unit ₹ 10 a) BE Sales in Units and Rupees 4M b) P/V Ratio 4M c) Sales required earning a profit of ₹ 50,000. 6M
- 7. From the following Trial Balance of XYZ Ltd. Co as on 31st Dec, 2014 is given below. Prepare final accounting statements.

1 5		
Particulars	Debit	Credit
Capital		1,50,000
Plant & Machinery	50,000	
Sundry Debtors and Creditors	40,000	20,000
Wages	25,000	
Purchases and Sales	2,15,000	3,80,000
Opening Stock	35,000	
Salaries	20,000	
Insurance	5,000	
Cash at Bank	30,000	
Cash on Hand	35,000	
Interest on Loan	10,000	
Discount	5,000	
Vehicles	35,000	
Term Loan		35,000
Bills Receivables and Payable	45,000	15,000
Furniture	50,000	
	6,00,000	6,00,000
Closing Stock was valued		

Closing Stock was valued at ₹ 50000/-.

14M

14M

8. Discuss the role and importance of ratio analysis to assess the performance of a firm

Hall Ticket Number :											
----------------------	--	--	--	--	--	--	--	--	--	--	--

Code: 1G655

Max. Marks: 70

III B.Tech. I Semester Regular & Supplementary Examinations Nov/Dec 2015 **Design and Drawing of Reinforced Concrete Structures**

(Civil Engineering)

Use of IS 456:2000, SP16 Design aided charts only and IS:875 (Part 1 & Part 2) books is permitted in the examination hall.

PART - A

(Answer any one question) (Assume any data, if necessary)

- 1. Design a R.C. slab for a room of size 4 m x 5 m with discontinuous and simply supported edges on all the sides with corners prevented from lifting to support a live load of 4 kN/m². It is finished with 20 mm thick granolithic topping. Adopt M 20 grade concrete and Fe 415 HYSD bars.
- 2. A T-beam slab floor of reinforced concrete has a slab 150 mm thick spanning between the T-beams which are spaced 3 m apart. The beams have a clear span of 10 m and the end bearings are 450 mm thick walls. The live load on the floor is 4 kN/m². Using M 20 grade concrete and Fe 415 HYSD bars, design the intermediate beams.

PART – B

(Answer any three questions)

- 3. Design a reinforced concrete beam supported on two walls 500 mm thick, spaced at a clear distance of 6 m. The beam carries a superimposed load of 30 kN/m. The size of the beam is restricted to 300 mm x500 mm. Use M 20 concrete, and Fe 415 steel. 14M
- 4. Design a combined column footing with a strap beam for two reinforced concrete columns of size 300 mmx 300 mm spaced 4 m c/c and each supporting a service axial load of 500 kN. The safe bearing capacity of soil at the site is 150 kN/m². Adopt M 20 grade concrete and Fe 415 HYSD bars. 14M
- 5. a) Design a short axially loaded column 300 mm x 300 mm to support a service load of 950 kN. Use M 20 concrete, and Fe 250 steel 11M
 - b) What is the minimum and maximum percentage of steel reinforcement in column as per IS code. Why is it required?
- A simply supported beam, 300 mm wide and 600 mm effective depth carries a 6. uniformly distributed load of 75kN/m including esef weight over an effective span of 6 m. The reinforcement consists of 5 bars of 25 mm diameter. Out of these two bars can be safely bent up at 1 m distance from the support. Design the shear reinforcement for the beam. 14M
- 7. a) Enumerate the differences between working stress method and limit state method. 4M
 - b) Discuss about limit state of serviceability.
 - c) Explain how you determine the deflection due to creep and shrinkage. 6M

3M

4M

R-11 / R-13

Time: 03 Hours

 $1 \times 28 = 28$ marks

3x14 = 42 marks

						r	1		1			-				
Hall	Tick	et Number :														
															р 11	/ D 13
ode	: 1G	1653													K-11	/ R-13
	B.Te	ech. I Semes	ter I	Regi	ular	& Sı	upple	eme	ntary	/ Ex	amir	natio	ns N	Nov/	Dec 20)15
				E			ing .			gy-I						
	Max	k. Marks: 70			(Civil	Eng	ineer	ing)					Tir	ne: 03	Houre
	ivia/				Ansv	ver a	ny fi	<i>ve</i> ai	Jesti	ons				•••	ne. 00	nours
		All	Que				qual	•			arks	eacl	n)			
							*****	****								
1.	a)	Describe vari	ous	meth	iods	of co	mpu	ting a	avera	ige r	ainfa	ll ove	er a b	casin		7M
	b)	What do you ι	undei	rstan	d by	preci	pitatio	on? E	Expla	in va	rious	type	s of p	precip	itation.	7M
2.	a)	What is evap	otrar	nspira	ation	? Ho	w to	mea	sure	evap	ootra	nspir	atior	ו?		7M
	b)	What are the	Fact	tors a	affec	tina I	nfiltra	ation				•				7M
	,					0										
3.		What are the	metl	hods	of co	ompi	uting	runo	ff froi	m a c	atch	imen	t are	a? G	ive the	
		various form	llae	statir	ng cle	early	the a	area	for w	hich	each	n is a	pplic	able		14M
4.	a)	What are the	limit	ation	is of	appli	catio	ns o	f Unit	t hyd	rogra	aph?				7M
	b)	Explain abou	t rati	onal	metł	nod.										7M
5.	a)	Derive the e	xpres	ssion	for	disch	argir	ng fro	om a	well	in cc	onfine	ed aq	quifer		7M
	b)	Distinguish c	learly	/ bet	weer	ı a sł	nallov	w we	ll and	d dee	ep we	ell. H	ow d	loes ;	a deep	
	,	well differ fro	m a t	tube	well	in co	nfine	ed aq	uifer		•					7M
6.	a)	Describe qua	lity c	of Irriq	gatio	n wa	ter a	nd a	so st	anda	ards	for ir	rigati	ion w	ater.	8M
	b)	Find the delta	a for	a cro	op if t	he d	uty fo	or a b	base	perio	od of	110	days	s is		
		(i) 80acres/cu	usec	(ii) 1	400	hect	ares/	'cum	ec							6M
7.	a)	What are the	facto	ors a	ffecti	ing d	uty?	How	can	duty	can	impr	ove?	>		7M
	b)	What do you	ı und	derst	and	by ir	rigati	on e	fficie	ncie	s? W	/hat	are	the v	/arious	
	,	types of effici					J									7M
8.	a)	Design the i	rriga	tion	cana	ıl to	carry	y a (disch	arge	of	1.4 c	cume	ec. A	ssume	
	,	N=0.0225,m=	•				-			÷						10M
	b)	What are the	drav	vbac	ks of	ken	nedy	's the	eory?)						4M
	,															

Hall Ticket Number :										
----------------------	--	--	--	--	--	--	--	--	--	--

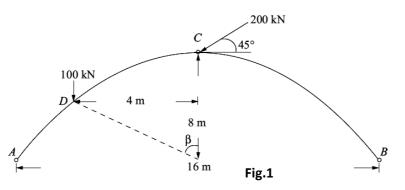
Code :	1G652	R-11 / R-13
III B	Tech. I Semester Regular & Supplementary Examinations Nov/De. <i>Engineering Geology</i> (Civil Engineering)	ec 2015
Мах	Answer any five questionsTime: 0	3 Hours
	All Questions carry equal marks (14 Marks each)	
1.	Justify the importance of Engineering Geology from the civil engineering of view with suitable examples.	point 14M
2.	Write a detailed note on identification of minerals through their ph properties with suitable examples.	ysical 14M
3. a)	Write a note on geological classification of rocks?	8M
b)	Give the properties of Granite, Basalt and Sand stone.	6M
4.	What is a fault? Write a detailed note on the classification of faults with neat sket	ches. 14M
5. a)	Explain the Hydrological properties of rocks	7M
b)	Explain the causes and mitigation of land slides	7M
6.	Write a detailed note on Electrical resistivity method of exploration.	14M
7.	Discuss the classification of Dams with neat sketches?	14M
8.	What is the purpose of tunneling? Explain the geological considerations tunneling?	in the 14m

Hall Ti	cket Number :]				
Code : III B	1G654 .Tech. I Seme				•••			-		inati	ons	Nov		11 / R- 2015	13
Мах	. Marks: 70	LI	iviro	(Civ	ril Eng	ginee	ring))				Time	: 03 I	Hours	
	AI	I Questic			any i equa		•			s eac	ch)				
1. a)	Explain the imp	portance	of pr	otect	ed w	ater	supp	ly to	a co	mmu	unity			5	бM
b)	Explain with a scheme	a flow d	iagra	m c	ompo	onen	ts of	a	conv	entio	nal	wate	r sup		M
2. a)	List various typ	oes of wa	ter de	emar	nd an	d ex	plain	any	three	e der	nano	ds in	detail	. 7	'M
b)	List and explain	n the fac	tors a	affect	ing p	er ca	pita	dem	and.					7	'M
3. a)	With the help c	of neat sk	etch	expla	ain di	ffere	nt di	stribu	ution	netw	vorks	6.		8	BM
b)	List and explai their location, s					in w	vater	sup	ply s	chen	ne w	/ith re	espec		SM
4. a)	List and explain	n differer	nt sou	irces	of w	ater	pollu	tion.						6	M
b)	Write a note or	n water b	orne	disea	ases	and	their	cont	rol.					8	BM
5. a)	Explain the ob	-					with	wate	r trea	atme	nt pl	ant fl	ow ch	nart 10	M
b)	12MLD of wate per liters. Find						nt pl	ant ι	using	alun	n do	sage	of 16	mg	
	(i) Total qı (ii) Amoun													4	M
6. a)	With the help c	of neat sk	etch	expla	ain w	orkin	g of	rapio	d san	d filt	er			10	M
b)	Chlorine usag residue after 1 and chlorine de	5 minute	s cor	ntact	time				•			•	•	ng/l	M
7. a)	Write BIS stand (i) Nitrate	dards an (ii) Fluc	Ũ	nifica		ior th Harc			•	hlori	de	(v) Ir	on	10	M
b)	Explain the Act	tivated ca	arbon	ads	orptio	on pr	oces	s of	tertia	ry wa	ater	treatr	nent.	4	M
8. a)	With the help omulti storey bu		ketch	expl	ain g	ener	al lay	/out	of wa	ater s	supp	ly sc	heme		BM
b)	Explain detecti	ion and p	rever	ntion	of le	akag	e in v	wate	r sup	ply n	nain	s.		6	SM

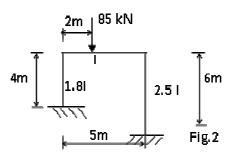
Hall Ticket Number : R-11 / R-

Code : 1G651

Max. Marks: 70

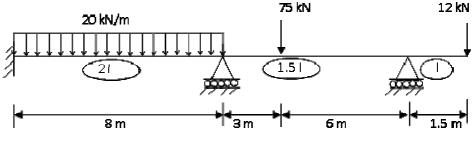

III B.Tech. I Semester Regular & Supplementary Examinations Nov/Dec 2015 Structural Analysis-II

(Civil Engineering)

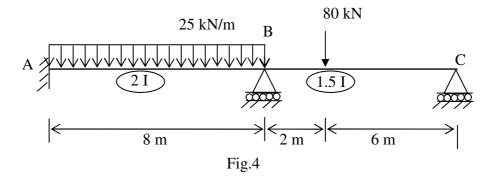

Time: 03 Hours

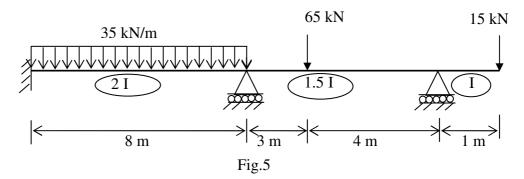
Answer *any five* questions All Questions carry equal marks (14 Marks each)

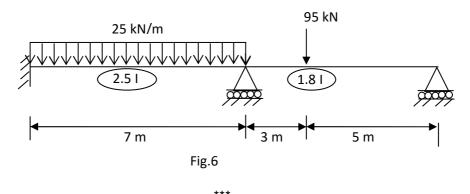
1. A circular three hinged arch is loaded as shown Fig.1. Calculate the reactions and bending moments at 6 m span from left hinge.



- 2. A two hinged parabolic arch of 26 m span and central rise of 4 m. It carries a udl of 35 kN/m over the right half of the span and concentrated load of 100 kN at the crown. Locate and find the magnitude of maximum bending moment. Also find the shear force and normal thrust at quarter span section from the left support. Assume that moment of inertia at a section varies as secant of the slope. Neglect the effect of rib shortening.
- 3. Analyse the frame shown in **Fig.2** using Slope Deflection method, and draw bending moment diagrams. Draw elastic curve.




- 4. Analyse the frame shown in **Fig.2** using Moment distribution method, and draw shear force and bending moment diagrams. Draw elastic curve.
- 5. Analyse the continuous beam shown in **Fig.3** using theorem of 'Kani's Method', and draw shear force and bending moment diagrams. Locate and find the distances of the points of contra-flexure from supports. Draw elastic curve.


 Analyse the continuous beam shown in Fig.4, using Flexibility method, and draw shear force and bending moment diagrams. During loading, the support C sinks by 15 mm. Locate and find the distances of the points of contra-flexure from supports. Draw elastic curve. Also find the maximum moment. Take EI= 5500 kNm².

7. Analyse the continuous beam shown in **Fig.5**, using 'Stiffness Method', and draw shear force and bending moment diagrams. Locate and find the distances of the points of contra-flexure from supports. Draw elastic curve.

8. Find the collapse load for the beam shown in **Fig.6**, using Plastic Analysis.

