Hall	Ticke	et Number :	_						
Code:		R-14							
Code:		B.Tech. I Semester Regular Examinations November 2016							
		Computer Networks							
		(Common to CSE & IT)							
Max. A	-	tks: 70 Time: 3 Hour er all five units by choosing one question from each unit (5 x 14 = 70Marks) *******	S						
		UNIT–I							
1.	a)	Describe the layers of ISO OSI model with neat diagram.	7M						
	b)	Explain about fibre optic transmission with its advantages and disadvantages.	7M						
		OR							
2.	a)	Illustrate about computer networks with examples.	7M						
	b)	Distinguish between multiplexing and switching.	7M						
		UNIT–II							
3.	a)	Explain in detail about stop and wait protocol.	7M						
	b)	Discuss about wireless LANs.	7M						
		OR	7M						
4.	a)	Describe about go back N sliding window protocol.							
b) Explain the structure of IEEE 802.X standard Ethernet.									
		UNIT–III							
5.	a)	What are different routing algorithms in network layer? Explain about distance vector routing algorithm.	7M						
	b)		7M						
	,	OR							
6.	a)	Compare broadcasting and multicasting	7M						
	b)	Define congestion. Explain the leaky bucket algorithm for congestion control.	7M						
		UNIT–IV							
7.	a)	Explain about transport service primitives.	7M						
	b)	Describe the TCP header format.	7M						
		OR							
8.	a)	Compare connection oriented and connection less services in transport layer.	7M						
	b)	Explain the header format of UDP.	7M						
		UNIT–V							
9.	a)	Briefly explain about DNS in internet.	7M						
	b)	Write short notes on World Wide Web.	7M						
		OR							
10.	a)	Write short notes on Electronic mail.	7M						
	b)	Explain about FTP and HTTP.	7M						
		<u>ዮ</u> ዮ ዮ							

R-14 Code: 4G451 III B.Tech. I Semester Regular Examinations November 2016 Design and Analysis of Algorithms
III B.Tech. I Semester Regular Examinations November 2016 Design and Analysis of Algorithms (Common to CSE & II) Max. Marks: 70 Answer all five units by choosing one question from each unit (5x 14 = 70Marks) ******** UNIT-I 1. a) Explain the properties of an algorithm with an example. b) Explain the set representing using tree and develop algorithms for UNION and FIND using weighing and collapsing rules. 0 0 2. a) Define i) Profiling ii) Time Complexity iii) Space Complexity. 9 b) Explain about Amortized Analysis 0 0 0 4. a) Explain Recursive Binary search algorithm with suitable example. 0 4. a) Explain Recursive Binary search algorithm with suitable examples. 0 4. a) Explain Recursive Binary search algorithm with suitable examples. b) State the Job – Sequencing with deadlines problem. Find an optimal sequence to the n=5 Jobs where profits (P1,P2,P3,P4,P5) = (20,15,10,5,1) and deadlines (d1,d2,d3,d4,d5) = (2,2,1,3,3). 0 0 4. a) Draw an Optimal Binary Search Tree for n=4 identifiers (a1,a2,a3,a4) = (do, if, read, while) P(1:4)=(3,3,1,1) and Q(0:4)=(2,3,1,1,1). b) What is a backtracking? Give the explicit and implicit constraints in 8 queen's problem. 0 0 6 6. a) Explain how Matrix – chain Multiplication problem can be solved using
Answer all five units by choosing one question from each unit (5 x 14 = 70Marks) ********* UNIT-1 1. a) Explain the properties of an algorithm with an example. b) Explain the set representing using tree and develop algorithms for UNION and FIND using weighing and collapsing rules. 0 2. a) Define i) Profiling ii) Time Complexity. iii) Space Complexity. 9 b) Explain about Amortized Analysis 5 UNIT-II 3. a) Write Divide – And – Conquer recursive Quick sort algorithm and analyze the algorithm for average time complexity. b) What is a Minimum Cost Spanning tree? Explain Kruskal's Minimum cost spanning tree algorithm with suitable example. 6 4. a) Explain Recursive Binary search algorithm with suitable examples. b) State the Job – Sequencing with deadlines problem. Find an optimal sequence to the n=5 Jobs where profits (P1,P2,P3,P4,P5) = (20,15,10,5,1) and deadlines (d1,d2,d3,d4,d5) = (2,2,1,3,3). UNIT-III 5. a) Draw an Optimal Binary Search Tree for n=4 identifiers (a1,a2,a3,a4) = (do, if, read, while) P(1:4)=(3,3,1,1) and Q(0:4)=(2,3,1,1,1). b) What is a backtracking? Give the explicit and implicit constraints in 8 queen's problem. CR 6. a) Explain how Matrix – chain Multiplication problem can be solved using
 b) Explain the set representing using tree and develop algorithms for UNION and FIND using weighing and collapsing rules. IOR 2. a) Define Profiling Time Complexity Space Complexity. b) Explain about Amortized Analysis UNIT-II 3. a) Write Divide – And – Conquer recursive Quick sort algorithm and analyze the algorithm for average time complexity. b) What is a Minimum Cost Spanning tree? Explain Kruskal's Minimum cost spanning tree algorithm with suitable example. OR 4. a) Explain Recursive Binary search algorithm with suitable examples. b) State the Job – Sequencing with deadlines problem. Find an optimal sequence to the n=5 Jobs where profits (P1,P2,P3,P4,P5) = (20,15,10,5,1) and deadlines (d1,d2,d3,d4,d5) = (2,2,1,3,3). UNIT-III 5. a) Draw an Optimal Binary Search Tree for n=4 identifiers (a1,a2,a3,a4) = (do, if, read, while) P(1:4)=(3,3,1,1) and Q(0:4)=(2,3,1,1,1). b) What is a backtracking? Give the explicit and implicit constraints in 8 queen's problem. OR 6. a) Explain how Matrix – chain Multiplication problem can be solved using
and FIND using weighing and collapsing rules. 101 OR 0 2. a) Define i) Profiling ii) Time Complexity iii) Space Complexity. jii) Space Complexity. jiii) Space Complexity. jiii) Space Complexity. jiiii) Space Complexity. jiiii) Space Complexity. jiiii) Space Complexity. jiiiiii) Space Complexity. jiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
 2. a) Define Profiling Time Complexity Space Complexity. b) Explain about Amortized Analysis UNIT-II 3. a) Write Divide – And – Conquer recursive Quick sort algorithm and analyze the algorithm for average time complexity. b) What is a Minimum Cost Spanning tree? Explain Kruskal's Minimum cost spanning tree algorithm with suitable example. What is a Minimum Cost Spanning tree? Explain Kruskal's Minimum cost spanning tree algorithm with suitable example. What is a Minimum Cost Spanning tree? Explain Kruskal's Minimum cost spanning tree algorithm with suitable example. What is a Lipian Recursive Binary search algorithm with suitable examples. State the Job – Sequencing with deadlines problem. Find an optimal sequence to the n=5 Jobs where profits (P1,P2,P3,P4,P5) = (20,15,10,5,1) and deadlines (d1,d2,d3,d4,d5) = (2,2,1,3,3). UNIT-III a) Draw an Optimal Binary Search Tree for n=4 identifiers (a1,a2,a3,a4) = (do, if, read, while) P(1:4)=(3,3,1,1) and Q(0:4)=(2,3,1,1,1). What is a backtracking? Give the explicit and implicit constraints in 8 queen's problem. OR 6. a) Explain how Matrix – chain Multiplication problem can be solved using
 i) Profiling ii) Time Complexity iii) Space Complexity. b) Explain about Amortized Analysis 51 UNIT-II 3. a) Write Divide – And – Conquer recursive Quick sort algorithm and analyze the algorithm for average time complexity. b) What is a Minimum Cost Spanning tree? Explain Kruskal's Minimum cost spanning tree algorithm with suitable example. 61 OR 4. a) Explain Recursive Binary search algorithm with suitable examples. b) State the Job – Sequencing with deadlines problem. Find an optimal sequence to the n=5 Jobs where profits (P1,P2,P3,P4,P5) = (20,15,10,5,1) and deadlines (d1,d2,d3,d4,d5) = (2,2,1,3,3). 5. a) Draw an Optimal Binary Search Tree for n=4 identifiers (a1,a2,a3,a4) = (do, if, read, while) P(1:4)=(3,3,1,1) and Q(0:4)=(2,3,1,1,1). b) What is a backtracking? Give the explicit and implicit constraints in 8 queen's problem. OR 6. a) Explain how Matrix – chain Multiplication problem can be solved using
UNIT-II 3. a) Write Divide – And – Conquer recursive Quick sort algorithm and analyze the algorithm for average time complexity. 81 b) What is a Minimum Cost Spanning tree? Explain Kruskal's Minimum cost spanning tree algorithm with suitable example. 61 OR 0 4. a) Explain Recursive Binary search algorithm with suitable examples. 61 b) State the Job – Sequencing with deadlines problem. Find an optimal sequence to the n=5 Jobs where profits (P1,P2,P3,P4,P5) = (20,15,10,5,1) and deadlines (d1,d2,d3,d4,d5) = (2,2,1,3,3). 81 UNIT-III 5. a) Draw an Optimal Binary Search Tree for n=4 identifiers (a1,a2,a3,a4) = (do, if, read, while) P(1:4)=(3,3,1,1) and Q(0:4)=(2,3,1,1,1). 81 b) What is a backtracking? Give the explicit and implicit constraints in 8 queen's problem. 61 OR 61 a) Explain how Matrix – chain Multiplication problem can be solved using 61
 3. a) Write Divide – And – Conquer recursive Quick sort algorithm and analyze the algorithm for average time complexity. b) What is a Minimum Cost Spanning tree? Explain Kruskal's Minimum cost spanning tree algorithm with suitable example. 61 OR 4. a) Explain Recursive Binary search algorithm with suitable examples. b) State the Job – Sequencing with deadlines problem. Find an optimal sequence to the n=5 Jobs where profits (P1,P2,P3,P4,P5) = (20,15,10,5,1) and deadlines (d1,d2,d3,d4,d5) = (2,2,1,3,3). 5. a) Draw an Optimal Binary Search Tree for n=4 identifiers (a1,a2,a3,a4) = (do, if, read, while) P(1:4)=(3,3,1,1) and Q(0:4)=(2,3,1,1,1). b) What is a backtracking? Give the explicit and implicit constraints in 8 queen's problem. 6I OR 6I
 algorithm for average time complexity. b) What is a Minimum Cost Spanning tree? Explain Kruskal's Minimum cost spanning tree algorithm with suitable example. 61 0R 4. a) Explain Recursive Binary search algorithm with suitable examples. b) State the Job – Sequencing with deadlines problem. Find an optimal sequence to the n=5 Jobs where profits (P1,P2,P3,P4,P5) = (20,15,10,5,1) and deadlines (d1,d2,d3,d4,d5) =(2,2,1,3,3). 5. a) Draw an Optimal Binary Search Tree for n=4 identifiers (a1,a2,a3,a4) = (do, if, read, while) P(1:4)=(3,3,1,1) and Q(0:4)=(2,3,1,1,1). b) What is a backtracking? Give the explicit and implicit constraints in 8 queen's problem. 61 0R 62 64 64 65 66 66 67
 spanning tree algorithm with suitable example. OR 4. a) Explain Recursive Binary search algorithm with suitable examples. b) State the Job – Sequencing with deadlines problem. Find an optimal sequence to the n=5 Jobs where profits (P1,P2,P3,P4,P5) = (20,15,10,5,1) and deadlines (d1,d2,d3,d4,d5) = (2,2,1,3,3). UNIT-III 5. a) Draw an Optimal Binary Search Tree for n=4 identifiers (a1,a2,a3,a4) = (do, if, read, while) P(1:4)=(3,3,1,1) and Q(0:4)=(2,3,1,1,1). b) What is a backtracking? Give the explicit and implicit constraints in 8 queen's problem. OR 6. a) Explain how Matrix – chain Multiplication problem can be solved using
 4. a) Explain Recursive Binary search algorithm with suitable examples. b) State the Job – Sequencing with deadlines problem. Find an optimal sequence to the n=5 Jobs where profits (P1,P2,P3,P4,P5) = (20,15,10,5,1) and deadlines (d1,d2,d3,d4,d5) =(2,2,1,3,3). INIT-III 5. a) Draw an Optimal Binary Search Tree for n=4 identifiers (a1,a2,a3,a4) = (do, if, read, while) P(1:4)=(3,3,1,1) and Q(0:4)=(2,3,1,1,1). b) What is a backtracking? Give the explicit and implicit constraints in 8 queen's problem. OR 6. a) Explain how Matrix – chain Multiplication problem can be solved using
 b) State the Job – Sequencing with deadlines problem. Find an optimal sequence to the n=5 Jobs where profits (P1,P2,P3,P4,P5) = (20,15,10,5,1) and deadlines (d1,d2,d3,d4,d5) =(2,2,1,3,3). 5. a) Draw an Optimal Binary Search Tree for n=4 identifiers (a1,a2,a3,a4) = (do, if, read, while) P(1:4)=(3,3,1,1) and Q(0:4)=(2,3,1,1,1). b) What is a backtracking? Give the explicit and implicit constraints in 8 queen's problem. 6I OR 6. a) Explain how Matrix – chain Multiplication problem can be solved using
 sequence to the n=5 Jobs where profits (P1,P2,P3,P4,P5) = (20,15,10,5,1) and deadlines (d1,d2,d3,d4,d5) = (2,2,1,3,3). UNIT-III 5. a) Draw an Optimal Binary Search Tree for n=4 identifiers (a1,a2,a3,a4) = (do, if, read, while) P(1:4)=(3,3,1,1) and Q(0:4)=(2,3,1,1,1). b) What is a backtracking? Give the explicit and implicit constraints in 8 queen's problem. OR 6. a) Explain how Matrix – chain Multiplication problem can be solved using
 5. a) Draw an Optimal Binary Search Tree for n=4 identifiers (a1,a2,a3,a4) = (do, if, read, while) P(1:4)=(3,3,1,1) and Q(0:4)=(2,3,1,1,1). b) What is a backtracking? Give the explicit and implicit constraints in 8 queen's problem. 61 OR 6. a) Explain how Matrix – chain Multiplication problem can be solved using
 b) What is a backtracking? Give the explicit and implicit constraints in 8 queen's problem. 6I OR 6. a) Explain how Matrix – chain Multiplication problem can be solved using
problem. OR 6. a) Explain how Matrix – chain Multiplication problem can be solved using
6. a) Explain how Matrix – chain Multiplication problem can be solved using
aynamic programming with suitable example.
 b) Explain the Graph – coloring problem. And draw the state space tree for m=3 colors n=4 vertices graph. Discuss the time and space complexity. 71
 What are connected and bi-connected components? Explain with suitable example.
b) Define the terms Branch and Bound. Explain about its general method 71 OR
8. a) Write short notes on Graph Traversal Techniques. 71
b) Solve 0/1 knapsack problem using Branch and Bound. 71
9. State and prove Cook's Theorem 14
OR
10. Discuss about the complexity of NP-Hard problems. 14

Hall	Ficke	et Number :										
Code	: 4 G	452 R-14										
		B.Tech. I Semester Regular Examinations November 2016										
		Web Technologies										
		(Common to CSE & IT)										
Max.	-	ks: 70 five units by choosing one question from each unit (5 x 14 = 70 Marks										
(113 ** C	i uii)									
		UNIT–I										
1.	a)	Explain Table Attributes with suitable example.										
b) What is a list? Discuss types of lists with example.												
		OR										
2.	a)	Write a Java script for Registration form email validation	71									
	b)	Discuss about form elements and give example for creation of forms.	71									
		UNIT–II										
3.	a)	What is XML? Differentiate with HTML.	71									
	b)	Define XML Schema. Show how an XML schema can be created	71									
		OR										
4.	a)	What is Document Object Model?	71									
	b)	Explain Presenting XML.	71									
		UNIT–III										
5.	a)	Explain about Java Beans and give its Advantages.	71									
	b)	List all the classes and interfaces in JavaBeans API.	71									
		OR										
6.	a)	How to handle Http request and Response?										
	b)	Explain session tacking using cookies.	71									
		UNIT–IV										
7.	a)	What is a servlet? Explain life cycle of a servlet. Illustrate with an example										
		program	71									
	b)	Explain javax.servelet Package.	71									
		OR										
8.	a)	What is a cookie? Give the information that is saved for each cookie on users										
	L)	machine	7N 7N									
	b)	Explain the components of JSP										
		UNIT-V										
9.	a) Þ	Explain the data sharing process between JSP's.	7N 7N									
	b)	Describe implicit JSP objects	71									
10	c)	OR Evolution error Handling and debugging methods in JSD	71									
10.	a) b)	Explain error Handling and debugging methods in JSP.	7N 7N									
	b)	Explain conditional processing using an expression and set to attributes.	71									

Hall	Ticke	et Number :	
		R-14	
Code		III B.Tech. I Semester Regular Examinations November 2016	
		Operating Systems	
		(Common to CSE & IT)	
		arks: 70 /er all five units by choosing one question from each unit (5 x 14 = 70 Marks)	ours

		UNIT–I	
1.	a)	What are Virtual Machines? Explain the functions of Virtual Machine.	7M
	b)	Discuss generation of Operating Systems.	7M
0		OR Eveloin Thread Cabaduling	714
2.	a) b)	Explain Thread Scheduling.	7M 7M
	D)	Describe Inter process communication.	7 111
		UNIT–II	
3.	a)	Explain the Critical Section Problem.	7M
	b)	Describe Semaphores.	7M
4	-)	OR	714
4.	a) b)	What are the characterization of Deadlock? Explain Deadlock Prevention process.	7M 7M
	b)	Explain Deadlock detection algorithm.	7 101
5.	2)	UNIT-III Evolain Domand Paging	7M
5.	a) b)	Explain Demand Paging. Explain Thrashing in UNIX.	7M
	0)	OR	7 101
6.	a)	Explain Transforming I/O requests to Hardware Operations.	7M
	b)	Explain STREAMS.	7M
	,	UNIT-IV	
7.	a)	Describe file access methods.	7M
	b)	Explain free space management.	7M
		OR	
8.	a)	Explain Disk Scheduling.	7M
	b)	Explain RAID Structure.	7M
		UNIT–V	
9.	a)	What is meant by protection? Explain goals and principles of Protection.	7M
	b)	Explain Capability based system.	7M
40	- \	OR	
10.	a) b)	Explain system and network threats.	7M 7M
	b)	Explain Windows Security System.	7M

Hall	Ficke	et Number :												Г			
Code	: 4 G	357	1 1							<u> </u>			J		F	R-14	
		B.Tech. I S	Seme	este	er Re	egul	lar E	xan	nina	itior	is No	ove	mbe	r 20	016		
			Mic	crop	oroc	cess	sors	and	d Ini	erfo	acin	g					
1400		1.0.70			(Cc	mm	ion t	0 CS	SE &	IT)				т:		2114	
Max. Answe		five units by	y cho	oosir	ng o		Ues *****		from	n ea	ch u	nit (5 x 14			3 Hou Marks	
								UNI	T–I								
1.	a)	What is the purpose of instruction stream byte queue in 8086?											6M				
 b) Describe the importance of segmentation registers. How to calculate physical address? Describe with an example. 												8M					
								OF	R								
2.	a)	Develop an	asse	mbly	/ lang	guag	e pro	gran	n for	sortir	ng of	ever	num ו	ber	s.		10M
	b)	Describe the	e purp	pose	of B	HE s	signa	l in 8	086	μP.							4M
								UNI	Г—II								
3.	a)	Describe 82	55 Pl	PI m	ode-	0 ор	eratio	on wi	th an	exa	mple						8M
	b)	Distinguish SRAM & DRAM									6M						
								OF	R								
4.	a)	Interpret I/O	map	ped	and	merr	nory r	napp	ed I/	O te	chnic	lues	in 808	36 µ	ΙP		6M
b) Explain seven segment display interface with 8086 μ P										8M							
								UNIT	 III								
5.	a)	What is DM	A? Ex	xplai	n ab	out N	/laste	er and	d Sla	ve m	ode	conc	ept.				8M
	b)	Discuss abo	out the	e arc	chited	ctura	l feat	ures	of 82	257.							6M
								OF	R								
6.	a)	Describe Int	errup	ot sei	rvice	rout	ines.										7M
	b)	Interpret Ve	ctor i	nterr	upt t	able	relat	ed to	808	6 µP							7M
								UNIT	'–IV								
7.	a)	How TTL to	RS2	32C	and	RS2	32C	to TT	L co	nver	sion	is po	ssible	?			7M
	b)	Distinguish	asynd	chroi	nous	and	sync	hron	ous	data	trans	fer s	chem	es.			7M
								OF	R								
8.	a)	Describe the	e arch	nitec	tural	featu	ures	of 82	51 U	SAR	Т.						8M
	b)	Distinguish asynchronous and synchronous data transfer schemes.									6M						
								UNI	Г–V								
9.	a)	List out the	out the salient features of Pentium pro processors									6M					
	b)	Explain about paging with an example.									8M						
								OF	R								
10.	a)	Distinguish	the a	rchite	ectur	al fe	ature	s of	8028	6 an	d 803	386 J	ıPs.				7M
	b)	List out the	featu	res c	of pro	otecte	ed m	ode s	segm	enta	tion						7M
							**	*								Dess	of 1

Hall ⁻	Ticke	et Number :											
							R-14						
Code	e: 4G	453 III B.Tech. I Semeste	r Poqu	ılar Evam	inations N	ovember	2016						
			•		oiler Desig		2010						
				ation Tech	-								
Мо	ix. N	Narks: 70			077		Time: 3 Hours						
	Ans	wer all five units by choo	osing on	e question	from each u	nit (5 x 14 =	= 70Marks)						
				UNIT-I									
1	a)	Write in brief about Chor	nskv hie		nguages and	recognizer	s. 7M						
	b)	Construct NFA for rec	•	•	0 0	•							
	/	regular expression. Che	• •			•	•						
				OR									
2	a)	Discuss in brief about the	e applica	ations of Fir	nite Automata		5M						
	b)	Minimize the following F	A. Q0 is	the initial s	tate and Q3 is	s the final st	ate.						
				А	В								
			Q0	Q1	Q2								
			Q1	Q3	Q4								
			Q2	Q5	Q6								
			Q3	Q3	Q4								
			Q4	Q5	Q6								
			Q5	Q3	Q4								
			Q6	Q5	Q6		9M						
2		Evaluin the role of int	ormodia	UNIT-II		d aada aa	timization						
3	a)	Explain the role of int phases in a compiler with		a code op	umization 7M								
	b)	Discuss in brief about to			0).		7M						
	0)			OR			, 101						
4	a)	What do you mean by an	nbiguity		ee grammars	? Give an ex	ample for						
	,	ambiguous grammar. Sho	ow that th	he grammar	in your examp	ole is ambigi	uous. 6M						
	b)	Discuss in detail about the	ne LEX 1	tool.			8M						
				UNIT-III									
5.		Construct the SLR pars	•										
		parsing routine and show the moves of the parser for the string a+a*a. $E \rightarrow E+A/A$ $A \rightarrow A*F/F$ $F \rightarrow (E)/a$ 14											
		$E \rightarrow E + A/A$ A	→ A*F/F	```	E)/a		14M						
c		M/rite about the type abo	alian of	OR	l functions on	donoratora	714						
6	a) b)	Write about the type che	-			•							
	b)	Write the general format of	a fACC			Suon with an	example. 7 M						
7	a)	Write syntax directed tra	analatio	UNIT-IV		, throp addr	ioss codo						
1	a)	for if-else and switch-cas			or generating		7M						
	b)	What is a process control			w is it used ir	n storage all							
	~)			OR		l otorago an							
8.		Discuss in detail about va	rious da	-	s used in symb	ool table orga	anization. 14M						
				UNIT-V									
9.		What is a basic block?	Give ar	n example.	Write three a	address coo	le for the						
		following code segment.	Identify	the basic b	locks.								
		a = b+c;											
		for (i=1; i<=n; i++) { a[i]	= 0;}										
		while (a <=n)	,										
		$\{a[i] = b + a[i]^*c; a \in \{a[i], a \in [i]\}$		alili									
		for (i=1; i<=n; i++) { prin	u(`%d″,				14M						
10	2)	What are the principal so		OR optimizativ	no Evolain	ith avample	es. 7M						
10.	,	Discuss about the gener		•	•	nui example	2S. 7M 7M						
	b)	Discuss about the gener		seneration ***	ayonunn.		7 111						

Code: 4G142		<u> </u>				J	22
Hall Ticket Number :							

Code: 4G142

III B.Tech. I Semester Regular Examinations Nov/Dec 2016

Software Engineering

(Information Technology)

Max. Marks: 70

Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)

UNIT-I

1. Explain about software myths and different types of the myths.

OR

- a) Which process model leads to software reuse? Justify. 2.
 - b) Illustrate the functioning of Unified process.

UNIT-II

- 3. a) Explain difference between Functional and Non-functional Requirements?
 - b) Define the following
 - i) Risk Refinement
 - ii) RMMM Plan

OR

- 4. a) Explain About Requirement Validation?
 - b) Explain About Elicitation and Analysis Process of Requirement Engineering?

UNIT-III

5. Describe software design process in detail.

OR

- a) What is Architecture? Explain a Brief taxonomy of Architectural Styles? 6.
 - b) Define the following
 - i) Design Classes
 - ii) Functional Independence
 - iii) Refactoring
 - iv) Abstraction

UNIT-IV

- 7. a) Write short notes on User Interface Design
 - b) Explain the types of Black Box Testing in detail

OR

- 8. a) Explain about user interface design systems.
 - b) Explain about issues in user interface design.

UNIT-V

- 9. a) Explain about ISO9000 standards.
 - b) Explain about Formal Technical Review.

OR

- 10. a) What is an indirect measure and why such measures are common in software metrics work? Explain size - oriented metrics.
 - b) Explain ISO 9126 Quality factors? And Also Explain Architectural Design Metrics and Component Level Design Metrics?

Time: 3 Hours