Hall Ticket Number : Image: Code: 5G356 III B.Tech. I Semester Regular & Supplementary Examinations Nover Microprocessors and Interfacing (Common to CSE & IT)	R-15 mber 2018 ne: 3 Hours
III B.Tech. I Semester Regular & Supplementary Examinations Nover Microprocessors and Interfacing	
· · · ·	ne: 3 Hours
(Common to CSE & IT)	ne: 3 Hours
Max. Marks: 70 Tin	
Answer all five units by choosing one question from each unit (5 x 14 = 70	
UNIT-I 1. a) Discuss the features of 8086	7M
b) Explain how the pipelining is implemented in 8086	7M
OR	7 101
2. a) List different instruction groups and mention two examples in each	7M
b) Develop 8086 alp to find the smallest word in a array of 100 words	7M
3. a) Differentiate SRAM and DRAM	4M
b) Interface two 8Kb ROM and four 16Kb RAM memories to 8086	10M
OR	
4. a) Justify latches and buffers used for interfacing	4M
b) Explain the architecture with different modes of 8255	10M
UNIT–III	
5. a) How the DMA is faster than others.	4M
b) Sketch and explain how to Interface 8257 with 8086	10M
OR	
6. a) Arrange the sequence of actions in 8086 when interrupt occurs.	4M
b) Develop the structure of cascading interrupt connection using 8259 UNIT-IV	10M
7. a) Give the importance of communication interface	4M
b) Explain the architecture of 8251 with neat sketch	10M
OR	
8. a) Give the structure how to connect the devices using RS232	4M
b) Summarize the each pin function of RS232	10M
UNIT–V	
9. a) Differentiate segmentation and paging	7M
b) Explain the salient features of 80386	7M
OR	
10. a) Discuss Salient features of Pentium processors	7M
 b) Explain the architectural features of Pentium pro processors <pre>***</pre>	7M

Hall	Tick	et Number :	
Code	e: 5G	R-15	
		ch. I Semester Regular & Supplementary Examinations November 2	018
		Operating Systems	
Mc	ny N	(Computer Science and Engineering) Narks: 70 Time: 3 Ho) Irc
1410		wer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)	5013

1.	a)	UNIT-I Explain inter process communication models along with its strengths and	
	ω,	weaknesses.	7M
	b)	Define a process and explain various operations on processes.	7M
2.	a)	OR Let the five given processes whose arrival time is zero as per the given order and	
2.	u)	length of the CPU burst time in milliseconds.	
		Process Burst Time P1 12	
		P_2 10	
		P ₃ 8	
		P ₄ 4 P ₅ 11	
		Calculate the average waiting time of nonpreemptive SJF scheduling algorithm.	7M
	b)	What are the major activities of an Operating System related to file management?	7M
2	2)	UNIT-II	
3.	a)	Compare Single-threaded and Multi-threaded processes. Write the benefits of multi-threaded programming.	7M
	b)	Explain Critical Section problem.	7M
		OR	
4.	a)	Write Short notes on a) Processor Affinity ii) Load Balancing	8M
	b)	Define a signal and explain signal handling.	6M
5.	a)	UNIT–III Explain Resource-Allocation Graph.	7M
0.	b)	Explain any two page replacement algorithms.	7M
		OR	
6.	a)	Consider the following snapshot of the system.	
		<u>Allocation</u> <u>Max</u> <u>Available</u> A B C D A B C D A B C D	
		P_0 1 2 1 2 1 1 1 2 2 5 2 1	
		P ₁ 1 1 0 0 1 8 5 0 P ₂ 2 4 5 4 3 4 5 6	
		P_3 1 6 4 2 1 6 6 2	
		$P_4 0 1 1 3 0 7 5 5$	
		Answers the following questions using the Bankers algorithm. i) Is the system in a safe state? If it is, find the sequence that satisfies safety	
		requirement.	
		 ii) If a request from a process P₁ arrives (0 3 1 0) can the request be granted immediately? Give detail explanation. 	8M
	b)	Explain the importance of contiguous memory allocation.	6M
		UNIT–IV	
7.	a)	Explain file access methods.	7M
	b)	Explain disk structure. OR	7M
8.	a)	Explain swap-space management.	6M
	b)	Explain disk scheduling.	8M
	-	UNIT-V	
9.	a)	Define Access Matrix and explain its implementation.	7M
	b)	Explain Kernel I/O subsystem.	7M
10.	a)	OR Explain the classification of security attacks.	7M
10.	a) b)	Explain capability based systems.	71VI 7M
	,	****	•

Hall	Tick	et Number :	
Code		R-15	
		n. I Semester Regular & Supplementary Examinations Novembe	r 2018
		Software Engineering	
۸ ۸	av I	(Computer Science Engineering) Marks: 70 Time: 3 H	ours
7010		wer all five units by choosing one question from each unit (5 x 14 = 70 Marks	
		******** UNIT–I	
1.	a)	What is software process frame work? Explain in detail.	7M
	b)	State and explain software practitioners myths and reality.	7M
	,	OR	
2.	a)	Explain the incremental software process model in detail.	7M
	b)	What are the core principles of software engineering practice ?	7M
		UNIT–II	
3.	a)	Explain in detail about requirements specification.	7M
	b)	What is scenario based modeling? Describe the steps of scenario based modeling with a suitable example.	7M
		modeling with a suitable example. OR	7 101
4.		Write about following Requirements Engineering activities:	
		i. Inception ii. Elicitation iii. Elaboration	
		iv. Negotiation v. Specification vi. Validation	
		vii. Requirements Management	14M
		UNIT-III	
5.	a)	Explain Component-Level Design for WebApps.	7M
	b)	Explain different design Concepts in details.	7M
_		OR	
6.		What is an architectural design? How would you assess various alternative architectural designs?	14M
		UNIT-IV	
7.	a)	What are the steps involved in user interface design? How is the interface	
		evaluation done?	7M
	b)	What categories of errors are traceable using Black-Box testing? Explain in	
		detail the following Black-Box testing methods i) Equivalence partitioning ii) Boundary value analysis iii) Orthogonal Array testing	7M
		OR	
8.	a)	What are the unit testing considerations? What is the difference between test	
		stub and driver? What are the problems associated with Top-down integration?	7M
	b)	What are objectives of white-box testing? Explain in detail the following White box testing techniques.	
		i) Data Flow Testing ii) Branch Testing.	7M
		UNIT-V	
9.	a)	What is software quality? Explain in detail	
		i) McCall's Quality factors ii) ISO 9126 Quality factors.	7M
	b)	What are activities of software maintenance?	3M
	c)	What are the basic principles of project scheduling?	4M
10	a)	OR What is software configuration management?	7M
10	a) b)	What are roles, features and contents of SCM repository?	7M
	D)	***	<i>i</i> IVI

Hall I	ICKE	et Number :	
Code:	5G1	55 R-15	
III B.Te	ch.	I Semester Regular & Supplementary Examinations November 201	8
		Web Technologies	
Max. I	Mar	(Computer Science and Engineering) ks: 70 Time: 3 Hour	rc .
		r all five units by choosing one question from each unit (5 x 14 = 70 Marks)	3
		UNIT–I	
1		What is HTML table? Explain table element with necessary attributes. Write	
		the HTML code to print following table. ONE TWO	
		FOUR	
		THREE FIVE SIX	
		SEVEN EIGHT	14M
		OR	
2.		What are different types of CSS available? Explain with examples.	14M
3.		UNIT-II What is DOM? Explain DOM and SAX using XML processors.	14M
0.		OR	
4.	a)	Explain XML Schema Architecture.	7M
	b)	What is XSLT? Describe with an example.	7M
	- /		
5.		Discuss the following:	
		i) Driver manager	5M
		ii) Database metadata iii) Querying database	4M 5M
		OR	5101
6.	a)	Develop a JDBC program to retrieve data from the database using the steps	
•	,	involve in the JDBC Program.	7M
	b)	Difference between Statement and Prepared Statement?	7M
		UNIT–IV	
7.	a)	Describe the lifecycle of servlet.	7M
	b)	Explain about handling HTTP request & response.	7M
0	-)	OR	714
8.	a) Þ	Using cookies, discuss session tracking.	7M 7M
	b)	Illustrate with example how database is accessed using servlets.	7M
9.		List out the important elements used in Constructing JSP Page use at least	
		one element with suitable program	14M
		OR	
10.	a)	In JSP, explain how to display values using expressions to set an attribute?	7M
	b)	Discuss error handling and debugging in JSP applications.	7M

Hall Ticket Number :

Hall	Tick	et Number :	
Code		R-15	;
		n. I Semester Regular & Supplementary Examinations November	2018
		Compiler Design	
Мах	. Mc	(Computer Science and Engineering) arks: 70 Time: 3 H	lours
A	Answ	ver all five units by choosing one question from each unit (5 x 14 = 70 Marks)
		UNIT–I	
1.		Explain various compiler construction tools.	6M
	b)	Given a statement a=b+c*20.where a,b,c are real. Write the output for every phase of compiler and describe its functionality.	8M
2	2)	OR What is LEX2 Explain in datail different sections of LEX Program with a	
2.	a)	What is LEX? Explain in detail different sections of LEX Program with a suitable example.	6M
	b)	Write short notes on boot strapping with suitable example.	4M
	c)	Explain regular grammar and regular expression with examples.	4M
3.	a)	UNIT–II State whether the grammar is LL(1) or not.	
0.	u)	$P \rightarrow D; S \qquad D \rightarrow D; D/a/$	
		S→S;S/b	8M
	b)	List preprocessing steps for applying predictive parsing. Illustrate with an example	6M
		OR	
4.	a)		1014
	b)	$S \rightarrow Ab / Ba A \rightarrow Ba / BB / ab B \rightarrow ab / bb / b$ Write the procedure to compute FIRST & FOLLOW.	10M 4M
	0)		
5.	a)		
		" <i>id or id and id</i> " is a valid string or not. E→E or T $E \rightarrow T$	
		$T \rightarrow T and F T \rightarrow F$	
		F→id	10M
	b)	Write Syntax Direct Translation for converting infix expression to post fix	
		form. OR	4M
6.	a)		
01	α,	$S \rightarrow CC$ $C \rightarrow cC/d$	8M
	b)	Discuss briefly about Equivalence of Type Expressions.	6M
7.	a)	UNIT-IV Construct various three address code representations of an expression	
1.	aj	X = -a * b + -a * b	6M
	b)	Discuss in detail about the Symbol table organization.	8M
		OR	
8.	a)	Describe briefly the types of Three address code with suitable example.	6M
	b)	Give an overview of various storage allocation strategies.	8M
		Page	e 1 of 2

UNIT–V

9. a) Write an algorithm for partition of blocks and apply it on the below Basic Code.

		Dasic Coue.								
		1. prod = 0	6. $t_4 = \text{prod} + t_3$							
		2. i = 1	7. prod = t ₄							
		3. $t_1 = 4^*i$	8. $t_5 = i+1$							
		4. $t_2 = a[t_1]$	9. i= t ₅							
		5. $t_3 = t_2 * 10$	10. if i <= 20 goto (3).	8M						
	b)) Explain machine dependent and machine independent optimizations in								
		detail.		6M						
		OR								
10.	a)	What is a Basic block? With a suita	ble example explain procedure for							
		identifying basic blocks.		6M						
	b)	Distinguish local and global optimizatio	n.	4M						
	c)	 b) Explain machine dependent and machine independent optimizations in detail. OR a) What is a Basic block? With a suitable example explain procedure for identifying basic blocks. b) Distinguish local and global optimization. 								
		-								

		et Num		[1	[1	<u> </u>	1	<u> </u>		1	1	J	R-15	
ode:			most	or Da	المح	ar 8	S	onlo	mo	ntar		ami	nati	000	November	201
III D.	iec	11.130	mesie		gui					etwo			nan	OHS	November	201
							-			CSE 8						
		arks: 7				-					-				Time: 3 H	
	Ansv	wer all i	five un	its by	/ cho	posin	g or		estic		me	ach	unit	(5x1	4 = 70 Marks)
									UNI	Г—I]					
1.	a)	List tw	/o way	s in	whic	h the	e OS				node	l and	the	ТСР	/IP reference	
									•	whic	h the	ey dif	fer. D	Discus	ss the layered	
			ecture													10
	b)											se si	gnal	to no	ise ratio is 20	
		aB, wr	nat is th	ne m	axim	um a	achie	vable	dat OR)?					2
2	c)	\//hat	oro tu			a fa	r	ا مع	_		<u>_</u>	مامک	\//b	t io	ana naasihla	
2.	a)		are tw vantage					0		•	OTOC	OIS ?	vvna	at is	one possible	7
	b)	Make	•			•••		•			und c	onna	ar wii	Ω.		-
	0)	Marc	a com	54115		51000						oppe		С.		
3.	a)	An 8 b	it byte	with	binai	rv va	lue 1) he ei	ncod	ed us	sina a	an even parity	
•	.,		ing co			•								Jung e		Ę
	b)	Explai	n abou	ıt pur	e AL	OHA	and	l slott	ed A	LOH	A					ç
		•							OR							
4.	a)	With th	ne help	o of n	eat c	diagra	am, e	expla	in th	e arc	hitec	ture	of cla	assica	al Ethernet.	7
	b)	In the	binary	cour	ntdov	vn pi	rotoc	ol, ex	kplai	n hov	valo	ower	num	bere	d station may	
		be sta	rved fr	om s	endiı	ng a	pack	et.							-	7
								l	UNIT	-111						
5.	a)						ces l	betwe	een t	he E(CN n	netho	od an	d the	RED method	
			gestive					_								Ę
	b)	Explai	n in de	tail a	bout	the	Link	State		·	Algo	rithm	n with	an e	example.	ç
~	-)			4			01:-	4	OR					£	1	
6.	a)	What i			•				•		•				•	Ç
	b)		ert the decim				hose	hex	ade	cimal	repr	eser	ntatio	n is	C22F1582 to	Ę
		uolleu	uecim		nalio				JNIT	' IV]					
7.		Explai	n the fo	ollow	ina t	ransi	oort l									14
		a)	Simpl		•		50111	ayor	prot	00010						
		b)	Stop a	•			col									
		c)	Go-Ba		•											
		d)	Selec		•			ol								
		- /			-				OR							
8.	a)	Draw	TCP h	eade	er for	mat.	Writ	te the	e sig	nifica	ince	of th	ne co	mpo	nents in TCP	
		heade	r forma	at												ę
	b)	Discus	ss the a	adva	ntage	es ar	nd dis	sadva	antag	ges of	f Del	ay T	olera	nt Ne	etworks.	Ę
									UNIT	-v						
9.	a)	Can a	compu	uter ł	nave	two	DNS	nam	ies t	hat fa	ll in	diffe	rent t	op le	vel domains?	
		lf so g	ive a p	lausi	ble e	xam	ple. I	f not	expl	ain w	hy n	ot.				ç
	b)	Comp	are and	d cor	trast	: JPE	G a	nd Ml			dard	•				Ę
4.0		147.14			_		(. II		OR							
10.			a short			the	IOIIO\	ving:								
		a)	Web I		62											
		,	Serve		ms											
