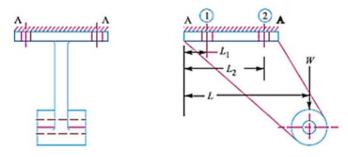
		Hall Ticket Number :			1									
	C	Code: 7G552	R-17											
III B.Tech. I Semester Regular & Supplementary Examinations February 2021														
		Applied Thermodynamics-II												
	(Mechanical Engineering) Max. Marks: 70 Time: 3 Hours													
	ľ	Answer all five units by choosing one question from each unit ($5 \times 14 = 70$												
		******		-	5									
			Marks	CO	Blooms Level									
		UNIT–I												
1.	a)	Comment the efficiency of the Rankine cycle with respect to Carnot cycle. Also obtain the expression for efficiency of Rankine cycle.	7M	CO1	L3									
	b)	A basic steam power plant works on ideal Rankine cycle between 30 bar and 0.04												
		bar. The initial condition of steam being 0.8 dry and flow rate 10kg/s determine	714	004	L3									
		 (i) Work required for pumping (ii) work done by the turbine (iii) cycle efficiency. OR 	7M	CO1	LS									
2	a)	Draw T-S and H-S diagram of reheat Rankine cycle with the help of circuit diagram												
۷.	a)	and derive its efficiency.	7M	CO1	L3									
	b)	In a Rankine cycle, the steam at inlet to turbine is dry saturated at a pressure of 35bar and the exhaust pressure is 0.2 bar. Calculate pump work, turbine work,												
		Rankine efficiency and condenser heat flow. Assume flow rate of steam as 9.5kg/s.	7M	CO1	L3									
2	\sim	UNIT–II Differentiate between water tube and fire tube boilers.	714	000	L2									
з.	a) b)		7M 7M	CO2	L2 L2									
	D)	Discuss the working of Babcock and Wilcox boiler with a neat sketch. OR	7 101	CO2	LZ									
Δ	a)	Derive the expression for the draught produced in terms of water column.	7M	CO2	L3									
ч.	b)	A boiler working at a pressure of 20 bar evaporates 10 kg of water per kg of coal	7 101	002	LU									
	2)	fired from feed water entering at 40°C. The steam at the inlet of the stop valve is												
		0.9 dry. Determine the equivalent evaporation from and at 100°C.	7M	CO2	L3									
		UNIT–III												
5.	a)	Explain the supersaturated flow of steam through a nozzle and the significance of	714											
	۲	Wilson's line.	7M	CO3	L2									
	b)	Steam enters a group of nozzles of a steam turbine at 12 bar and 220 ^o C and leaves at 1.2 bar. The steam turbine develops 220KW with a specific steam consumption of 13.5 kg/KWh. If the diameter of nozzles at throat is 7mm, calculate												
		the number of nozzles.	7M	CO3	L3									
		OR												
6.	a)	Derive an expression for the condition for maximum discharge through a nozzle.	7M	CO3	L3									
	b)	Dry saturated steam at 10 bar is expanded isentropically in a nozzle to 0.1 bar.												
		Using steam tables only, find the dryness fraction of the steam at exit. Also find the velocity of steam leaving the nozzle when initial velocity is negligible.	7M	CO3	L3									
				200										


UNIT-IV

7.	a)	What are various sources of air leakage in to steam condenser? How does it affect			
		the performance of condensing plant?	7M	CO4	L3
	b)	Describe with neat sketch the working of surface condenser.	7M	CO4	L2
		OR			
8.	a)	Explain the construction and working of, Edward's air pump.	7M	CO4	L2
	b)	A surface condenser is designed to handle 10,000 kg of steam per hour. The steam enters at 0.08 bar and 0.9 dryness and the condenser leaves at the corresponding saturation temperature, the pressure is constant throughout the condenser. Estimate cooling water flow rate per hour if cooling water temperature			
		is limited to 100°C.	7M	CO4	L3
		UNIT-V			
9.	a)	What is 50% Reaction Turbine?	4M	CO5	L2
	b)	Reaction Turbine runs at 3000rpm and its steam consumption is 15400kg/hr. the pressure of steam at a certain pair is 1.9 bar its dryness 0.93 and power developed by air is 3.5 kW. The discharging blade tip angle is 200 for both fixed and moving blades and the axial velocity of flow is 0.72 of the blade velocity. Find the drum diameter and blade height. Take the tip leakage steam as 8%, but neglect blade thickness.	10M	CO5	L3
		OR			
10.	a)	Show by graphical representation of pressure and velocity of a steam in impulse turbine.	5M	CO5	L2
	b)	In a De-Lavel turbine, the steam enters the wheel through a nozzle with a velocity of 500 m/s and at an angle of 20° to the direction of motion of the blade. The blade speed is 200 m/s and the exit angle of the moving blade is 25°. Find the inlet angle of moving blade, exit velocity of steam and its direction and work done per kg of steam.	9M	CO5	L3
		***** *****		000	20

	На	all Ticket Number :											
			R-1	7]								
		le: 7G555		2021									
	111 L	3.Tech. I Semester Regular & Supplementary Examinations Febr Design of Machine Elements-I	UUIY	2021									
		(Mechanical Engineering)											
Max. Marks: 70 Time: 3 Hours													
		Answer all five units by choosing one question from each unit (5 x 14 = 70 *********	Mark	5)									
			Marks	со	Blooms								
		UNIT-I			Level								
1.	a)	Discuss, What are the factors to be considered for the selection of materials for											
		the design of machine elements?	7M	CO1	L2								
	b)	Discuss the BIS method of designation of steels with an example.	7M	CO1	L2								
		OR											
2.	a)	What are preferred numbers? Find out the numbers of R5 basic series from 1											
	L.)	to 10.	7M	CO1	L1,L2								
	b)	A shaft, as shown in Fig.1, is subjected to a bending load of 3 kN, pure torque of 1000 N-m and an axial pulling force of 15 kN. Calculate the stresses at A											
		and B.											
		3kN											
		A 15kN											
		$- 50 \text{ mm Dia} \frac{15 \text{kN}}{\text{km}} $											
		B 1000 N-m											
		250 mm — >											
		Fig.1	7M	CO1	L6								
3.	a)	UNIT–II What is stress concentration factor? What are the methods of reducing stress											
0.	u)	concentration?	7M	CO2	L1,L2								
	b)	A forged steel bar of 50mm in diameter is subjected to a reversed bending											
		stress of 250 N/mm ² . The bar is made up of steel 40C8 (Sut = 600 N/mm^2).											
		Calculate the life of bar for a reliability of 90%. Assume $Ka = 0.44$, $Kb = 0.85$.	7M	CO2	L6								
4.	a)	OR What is endurance limit? What are the factors that affect the endurance limit of											
ч.	aj	a machine part?	4M	CO2	L1,L2								
	b)	A simply supported beam has a concentrated load at the centre which fluctuates			,								
		from a value of P to 4 P. The span of the beam is 500 mm and its cross-section is											
		circular with a diameter of 60 mm. Taking for the beam material an ultimate stress of 700 MPa, a yield stress of 500 MPa, endurance limit of 330 MPa for reversed											
		bending, and a factor of safety of 1.3, calculate the maximum value of P. Take a											
		size factor of 0.85 and a surface finish factor of 0.9	10M	CO2	L6								

UNIT-III

5. A bracket, as shown in figure below, supports a load of 30 kN. Determine the size of bolts, if the maximum allowable tensile stress in the bolt material is 60 MPa. The distances are: L1 = 80 mm, L2 = 250 mm and L = 500 mm.

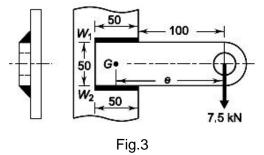
14M co3 L2

10M

CO3

CO4

L6


L6

L6

L6

OR

- 6. a) What are the advantages and disadvantages of welded joints? 4M co3 L1, L2
 - b) A welded connection, as shown in Fig.3 is subjected to an eccentric force of 7.5 kN. Determine the size of the welds if the permissible shear stress for the weld is 100 N/mm². Assume static conditions.

7. a) What is a knuckle joint? Give practical examples of knuckle joint.
b) Design the rectangular key for a shaft of 50 mm diameter. The shearing and

crushing stresses for the key material are 42 MPa and 70 MPa. 10M CO4

OR

Design and draw a cotter joint to support a load varying from 30 kN in Compression to 30 kN in tension. The material used is carbon steel for which the following allowable stresses may be used. The load is applied statically. Tensile stress = compressive stress = 50 MPa; shear stress = 35 MPa and crushing stress= 90 MPa.

UNIT–V

- 9. a) What are the different criteria of designing a shaft?
 b) Find the diameter of a solid shaft to transmit 25 kW at 300 rpm. Take the maximum allowable shear stress as 50 N/mm². If a hollow shaft is to be used in place of the solid shaft, find the inside and outside diameter when the ratio of inside to outside diameter is 0.6.
 4M CO5 L1,L2
 4M CO5 L1,L2
 - OR
- Design a cast iron protective flange coupling to connect two shafts in order to transmit 7.5 kW at 720 r.p.m. The following permissible stresses may be used: Permissible shear stress for shaft, bolt and key material = 33 MPa; Permissible crushing stress for bolt and key material = 60 MPa; Permissible shear stress for the cast iron = 15 MPa

CO5

		Hall Ticket Number :					
			R-17				
		Code: 7G553 III B.Tech. I Semester Regular & Supplementary Examinations F	ebruc	nrv 20)21		
		Dynamics of Machinery			/21		
		(Mechanical Engineering)					
	Ν	Aax. Marks: 70 Answer all five units by choosing one question from each unit (5 x 14 ********		e: 3 H Iarks)	ours		
			Marks	со	Blooms Level		
		UNIT–I					
1.	a)	Deduce an expression for the effort required to raise a body of weight W on an inclined plane with usual notations.	7M	CO1	L2,L3		
	b)	A body on a rough horizontal surface requires a force of 240 N inclined at 25° just to pull it and 280 N just to push it at the same angle. Determine the					
		weight of the body and the coefficient of friction.	7M	CO1	L2,L3		
		OR					
2.	a)	Describe with neat sketch the working principle of cone clutch.	7M	CO1	L2,L3		
	b)	A single plate clutch with both sides of the plate effective, is lined with asbestos having coefficient of friction of 0.3. The allowable pressure on fiction lining is 0.18 MPa. The inside and outside diameters of the friction lining are 90 mm and 300 mm respectively. Assuming uniform pressure, find the safe power that can be transmitted by this clutch at 300 rpm.	7M	CO1	L2,L3		
		UNIT–II					
3.		A simple band brake of drum diameter 600 mm has a band passing over it with an angle of contact of 210°. While one end of band is connected to the lever fulcrum, the other end is connected to the lever at a distance of 400 mm from fulcrum and this end is perpendicular to the lever. The brake lever is 1000 mm long. Coefficient of friction is 0.33. Find the effort required at the end of lever to	4 4 8 4				
		stop the rotation of the drum. The drum absorbs 15 kW at 720 rpm. OR	14M	CO2	L3,L4		
4.	a)	With neat sketch discuss the effect of gyroscopic couple on aero-planes.	5M	CO2	L2		
	a) b)	A ship engine is propelled by a rotor of mass 5000 kg and a radius of gyration of 0.5 m. The rotor rotates at 2100 rpm clockwise when viewed from the stern. Find the gyroscopic couple for the following conditions:i) The ship steers at a speed of 18 kmph to the left around a curve of 90 m radius.		002	L2		
		ii) The ship rolls with an angular velocity of 0.05 rad /sec clockwise when viewed from stern, at a particular instant.	9M	CO2	L3,L4 & Lt		
5.		UNIT-III A single cylinder, four stroke I C engine develops 12 kW at 600 rpm. The work done by the gases during expansion stroke is 3 times the work done by the gases during compression stroke. The work done by the other two strokes is negligible. The total fluctuating of speed is limited to 3 % of the mean speed. The work done during suction and expansion strokes may be assumed to be triangular in shape. Find the mass of the fly wheel taking its radius of provide a 2.5 m					
		radius of gyration as 0.5 m	14M	CO3	L3,L		

6.	a)	What do you understand by terms:			
		i) Sensitiveness ii) Hunting and iii) Isochronism	ЗM	CO3	L2
	B)	The arms of a porter governor are each 250 mm long and pivoted on the governor axis. The mass of each ball is 5 kg and the mass of central sleeve is 30 kg. The radius of rotation of the governor balls is 150 mm when sleeve begins to rise and reaches a value of 200 mm at maximum speed. Determine the speed range of the governor.	11M	CO3	L2, L3 & L4
			1 1 1 1 1	003	α L4
7.		A rotating shaft carries 4 masses A, B, C and D at radii 100, 125, 200 and 150 mm respectively. The planes in which these masses revolve are spaced at 600 mm apart. The masses at B, C and D are 10, 5 and 4 kg respectively. Find the required mass at A and the angular positions of 4 masses to keep the shaft in balance.	14M	CO4	L2. L3 & L4
		OR			
8.		The crank and connecting rod of a 4 cylinder in line engine running at 1800 rpm, are 50 mm and 250 mm respectively and the cylinders are placed at 150 mm apart. If the cylinders are numbered 1 to 4 in sequence from one end, then the cranks appear at intervals of 90° in the end view in the order 1 $- 4 - 2 - 3$. The reciprocating masses corresponding to each cylinder are 1.5 kg. Determine: i) Unbalanced primary and secondary forces if any and ii) Unbalanced primary couples with reference to central plane of engine.	14M	CO 4	L2. L3 & L4
			14101	CO4	α L4
9.	a)	A steel shaft 25 mm diameter, 1.5 m long carries a disc of mass 5 kg at its center and another mass of 2 kg at 0.5 m from left support. Find the whirling speed if $E = 200$ GPa.	6M	CO5	L3,L4
	b)	A cantilever shaft 50 mm diameter and 300 mm long has a disc of mass 100kg at its free end. The Young's modulus for the shaft material is 200GN/m ² . Determine the frequency of longitudinal and transverse vibrations of the shaft	8M	CO5	L2,L3 & L4
		OR			~
10.	a)	Deduce the expressions for natural frequency of vibration of a spring mass			
	,	system without considering the mass of spring and with considering mass of the spring.	14M	CO5	L2,L3 & L4

	Н	all Tic	ket Nu	umber	:								[
	Co	de: 70	3556										R -1	17	
				emes	ter R	eaul	ar & Si	Jople	ment	arv Ex	amir	ation	s February	/ 2021	
		2110		011100		-	ngine			•				202	
							Mecho	-		•					
	Ма		arks: 70	-		-			-	-	-		Time:		irs
		Ansv	ver all	five ur	nits by	choc	osing or	ne que		om ec	ich un	it (5 x	14 = 70 Mar	ks)	
								****	ጥ ጥ ጥ				Marks	со	Blo
								UT 1					IVIAI KS	CO	Le
1		1		<i></i>				NIT—I			45.	0	0.1 ^N		
1.							ange of nental d						01 ^{D.} 14M	004	
		1107	=101, 11	00=20	i anu n	unuan		OR		shart [-	5.50	·1	1 14111	CO1	
0	a)	Diaa	uss abo	1			Ĺ	Л							
2.	a)		ximum		Limite	ii) N/	linimum	Motal	Limite				8M	CO1	
	b)						iges ba			and nu	rnaaa	Evoloi		COT	
	D)		erence		11510116	a yau	iyes ba		type a	anu pu	ipose,	схріаі	6M	CO1	
		interi	0101100					IIT-II					0.11	001	
3.	a)	Desc	ribe the	metho	d of us	ina sir	ne bar fo		 urina ta	per and	ale of p	lua aau	aes. 7M	CO2	
0.	ير b)					-	llimator		-	-	5 I-		7M		
	0)	Слри		printerp				DR						002	
4.		Illust	ate NP	9 flatn	ess int	erfero							14M	CO2	
т.		must		Linatin	000 111	chere		IT-III					1 - 1 1 1	002	
5.		l ist t	vnes of	f surfa	ce rou	ahnes	s meas		nt meth	ods ar	nd disc	uss an	vone		
0.						•	s indust						14M	CO3	
								DR							
6.	a)	Evalu	late sui	rface fo	or CLA	and F	RMS val	ue usin	g the m	easure	ement f	rom a d	datum		
	,						length o		•						
			35	25	40	22	35	18	42	25	30	21			
			36	18	42	25	30	21	35	18	25	28	7M	CO3	
	b)	Shov	/ the IS	:3073	of 196	7 – to	charact	eristics	of surf	ace tex	kture.		7M	CO3	
							UN	IT–IV							
7.						sas	suitable	metho	d of in	spectio	on of p	orofile :			
		threa	d with r	neat sk	etch.								14M	CO4	
								DR							
8.		Expla	ain the I	princip	le of pi	neuma	atic com	parato	r using	a diag	ram.		14M	CO4	
							UN	IT–V							
9.	a)	Discu	iss ass	ignable	e and r	non-as	ssignabl	e caus	es.				7M	CO5	
	b)	Gene	erate da	ata to u	ise a d	ouble	samplir						7M	CO5	
							C	DR							
0.			ss the	import	ance c	of Coc	ordinatin	g Mea	suring	Machir	ies in i	industry	∕, List		
-			of CMN	-									14M	CO5	

Hall	I Ticket Number :	· · · · · ·		
Code	e: 7G551		R-17	
	Tech. I Semester Regular & Supplementary Examinations Industrial Management (Mechanical Engineering)	Febru	ary 20)21
	Marks: 70 Answer all five units by choosing one question from each unit (5 x 1/		e: 3 H 1arks)	ours
		Marks	со	Blooms Level
1.	UNIT–I Enumerate the concepts and functions of Management and organization OR	14M	CO1	L1
2.	Explain the basic concepts related to Departmentation and Decentralization	14M	CO1	L1
3.	UNIT–II Describe the objectives of plant layout. Explain the types of Plant layout. OR	14M	CO2	L1
4.	Explain in detail about the programme evaluation review techniques.	14M	CO2	L1
5.	UNIT-III Define the term Work study. Explain in detail the objectives of Work study.	14M	CO3	L1
6.	Describe the various methods involved for Performance rating in Work study.	14M	CO3	L1
7.	UNIT–IV Explain in detail about Inventory classification techniques. OR	14M	CO4	L1
8.	Explain the concepts of Marketing Mix and Product life cycle.	14M	CO4	L1
9.	UNIT-V Describe the different methods of evaluation methods in Human resource management OR	14M	CO5	L1
10.	Explain the various types of Wage incentive schemes.	14M	CO5	L1

		Hall Ticket Number :														
	(Code: 7G554			<u> </u>					I				R-17		
		III B.Tech. I Semeste	er Regu	Jar 8	. Sup	ople	mer	ntary	/ Ex	amiı	natio	ons I	ebru	Jary 20)21	
						-	e To									
				(Mec	chan	ical	Engi	neel	ring)			т:.			
		Max. Marks: 70 Answer all five units	s by cho	posing	one	que *****		from	n ea	ch ur	nit (5	5 x 14		me: 3 H Marks)	ours	
														Marks	со	Blooms Level
1	2)	Show cohomatically May	chant's				thogo	nala	uttin		ovol	ain in	dotai	1		
1.	a)	Show schematically Mer about the each forces er					•	narc	uun	y ano	expi		ueta	7M	CO1	L1
	b)	Describe important desi	rable pro	opertie			ing to	ol.						7M	CO1	L2
					OR											
2.	a)	What are throw away car						•			c requ	uirem	ents?	7M	CO1	L1
	b)	List various types of chip	o breake		•		heir s	ignifi	canc	e.				7M	CO1	L1
2	a)	With a neat diagram sket	ch an ar				it'e na	urte ou	nd de	ecrib	o tha	m brid	fly	7M	CO2	L4
З.	a) b)	What are the significant		-			-						-	7M	CO2	L4 L1
	5)	what are the significant	reatures	50121	OR		as U	Jiipe		0 811	engi			7 101	002	
4.	a)	Why are engine lathes c	-					•						7M	CO2	L2
	b)	Name any four operations	s which (perfc		l on a	lathe	and	expla	ain the	em br	iefly.	7M	CO2	L1
5.	a)	Explain the working of a	hydrau				necha	nism	of a	shap	er.			7M	CO3	L2
	b)	List various operations p	-	-										7M	CO3	L4
					OR											
6.	a)	Sketch and briefly expla drilling machine.	ain any	three	opera	ations	s that	can	be p	erfor	med	on a	radia	l 7M	CO3	L4
	b)	Sketch and briefly expla milling machine.	in any fo	our ope	eratio	ns th	at car	n be p	perfo	rmed	on a	n Uni	versa	l 7M	CO3	L2
					UNIT	[_]										
7.	a)	How are the abrasives s selection.	elected	for a g	rindin	ig ope	eratio	n? E	kplai	n the	reaso	ons fo	or thei	r 7M	CO4	L3
	b)	"Grinding is a mixture of	differer	t cuttir	ng pro OR	ocess	ses". 、	Justif	y it.					7M	CO4	L5
8.	a)	How broaching operatio	n is don	e on a	horiz	zonta	l pull t	type	broa	ching	mac	hine?)	7M	CO4	L3
	b)	Explain the basic princip	le of me	etal rer	nova	l in gi	rindin	g.						7M	CO4	L2
					UNIT	[_]										
9.	a)	Define Lapping operation	on and o	liscuss	s the	adva	Intage	es an	d ap	plica	tions	of La	appinę	9 7M	CO5	L1
	b)	Sketch and describe the	honing	proce	ss alo OR	•	ith its	s adv	anta	ges a	nd ap	oplica	tions.	7M	CO5	L4
10.	a)	Define a jig and discuss	any one	e types	s of d	rilling	jigs a	along	with	its a	pplica	ations	5.	7M	CO5	L3
	b)	Explain the essential cha	aracteris	stics ap	oplica	ations	of jig	is an	d fixt	ures.				7M	CO5	L2
						***	**									