	Н	all Ticket Number :													7
	Co	de: 19A453T	ľ	J					1 1	I	I	-	R-	19	
		III B.Tech.	l Ser			-					Febru	ary 2	022		
		(Fle	otro		-		-			s ing n Engir	heerin	a)			
		ix. Marks: 70								-				3 Hou	
	Aı	nswer any <i>five full</i> qu	estio	ns by	y cho	osin	-	e que: ****	stion	from ea	ich uni	it (5 x	14 = 70	Marks)	
													Marks	СО	Blooms Level
					l	JNI.	T—I								
1.	a)	Write in brief abo	out p	orop	ertie	es c	of D	FT?					7M	CO1	L3,L2
	b)	Consider an LTI	sys	tem	with	n im	npul	se re	espo	nse <i>h</i> (i	$t)=e^{-t}$	u(t).			
		Find the system	res	pons	se o	f th	e in	put x	(t) = s	$\sin 2tu$	t).		7M	CO1	L3
						OR									
2.	a)	A causal LTI sys									•	ion.			
		у(n)-	-ay	r(n -	-1)	= l	px(n)	l)-1	x(n-	1)				
		Where 'a' is rea							•						
		value of 'b' such following conditi			-			-			-	-			
		system, as it do						-				-			
		frequency.													
				H	$I(e^{J})$	iŠ)	=1		∀Š				7M	CO1	L5
	b)	Compute the D sequences cons							llowi	ng fin	ite le	ength			
		(i) x(n) = u(n)	luei	eui			igu	I I N.							
		(i) $x(n) = u(n-n)$	n)	XX.	here	• 0 <	'n	< N							
		$(ii) x(n) = a^n,$ $(iii) x(n) = a^n,$	• /				0								
							-1								
		$(iv)x(n) = \begin{cases} 1\\ 0 \end{cases}$	wi	lele /	n eve	d									
		U	vv 1		<i>n</i> ou	u							7M	CO1	L4
					U		[—]]						7 1 1	001	LŦ
3.		An 8-point sec	quer	nce				by	x(n)	$=\{2, 2,$	2, 2, 1, 1	1,1,1}.			
		Compute the 8-p											14M	CO1	L3
						OR									
4.	a)	(i) What are the									addi	tions			L2,
		required for co (ii) What is twidd				DT 64	4 рс	nnt F	·F1?						L1,
		(iii) What is the in				f ra	dix-	2?					7M	CO1	L1, L2
	b)	Compute the 8-p	ooint	t DI ⁻	T FF	T c	of x(r	ı) = (-	$(-1)^{n}$.					CO1	
							(, (,				7 111	001	

UNIT–III

5.	a)	Design a Filter with $H_{1}(a^{iw}) = a^{-i3w} + (4 - w) = (4 - 1)^{-i3w}$			
		$H_d(e^{jw}) = e^{-j3w}$; - /4 w /4 0; /4 w			
		Using Hamming Window for N=7	7M	CO2	L4
	b)	Using the bilinear transformation, obtain H (z) from analog transfer function H(s) when T=1s.			
		$H(s) = \frac{s^{3}}{(s+1)(s^{2}+2s+2)}$	7M	CO2	L3
		OR			
6.	a)	(i) What are the properties of Chebyshev type-1 and type-2 filter?			L1, L2,
		(ii) What is frequency warping?	7M	CO2	L2
	b)	Determine Direct form I Realization for following system.			
		Y(n)=0.5y(n-1)-0.25y(n-2)+x(n)+0.4x(n-1)	7M	CO2	L5
		UNIT–IV			
7.	a)	Consider the unit step signal. Obtain the signal with a	484	000	10
	ଜ)	decimation factor '2' and interpolation factor '2'.	4M		L3
	D)	Explain the Deccimation by a factor D in detail. OR	TUN	CO3	L4
8.		Discuss Multistage Implementation of Sampling rate			
		conversion.	14M	CO3	L3
		UNIT-V			
9.	a)	A speech signal s(t) is digitized at a sampling rate of 10 kHz. The speech signal was destroyed once the sequence s(n) was stored on a magnetic tape. Later, it is required to obtain			
		the speech signal sampled at the standard 8 kHz used in telephony. Develop a method to do this using discrete time			
		telephony. Develop a method to do this using discrete-time processing.	7M	CO4	L5
	b)	Considering an oversampling ADC system with maximum			_0
	,	analog signal frequency of 20 kHz and ADC resolution of 14			
		bits, determine the oversampling rate to improve the ADC			
		resolution to 16-bit resolution.	7M	CO4	L4
10	2)	OR Describe spectral analysis of non-stationary signals in			
10.	a)	Describe spectral analysis of non-stationary signals in DSP.	7M	CO4	L5
	b)	Explain about Oversampling D/A conversion in signal			_•
	,	processing applications	7M	CO4	L1
		END			

Hai	I Ticket Number :		R-19	
Code	e: 19A45FT		× 17	
	III B.Tech. I Semester Regular Examinations Jan/Feb 2 Electronic Measurements and Instrumentation			
	(Electronics and Communication Engineering)	•		
	Marks: 70		e: 3 H	
Ans	wer any <i>five full</i> questions by choosing one question from each unit (5 x *******	14 = 7	oMari	KS)
		Marks	со	Blooms Level
	UNIT-I			Level
1.	Explain operating mechanism of D'Arsonval Galvanometer using			
	torque equation.	14M	CO1	L2
	OR			
2.	Differentiate between accuracy, precision and resolution.	14M	CO1	L1
•			004	
3.	Describe the working of square and pulse generators.	14M	CO1	L2
4.	OR Discuss the detailed mechanism of harmonic distortion analyzers.	1414	CO1	L2
4.		14101	001	LZ
	UNIT-III			
5.	Explain the digital storage oscilloscope with a block diagram.	14M	CO1	L2
	OR			
6.	Describe the working of cathode ray tube and measurement			
	methodology.	14M	CO1	L4
_			004	
7.	Explain the principle of Maxwell's and Hays Bridge working.	14M	CO1	L4
8.	OR Describe the different types of AC bridges and their applications.	1 4 1 4	CO1	L4
0.	Describe the different types of AC bildges and their applications.	1411	COT	L4
	UNIT-V			
9.	Describe the transducers classifications.	14M	CO1	L2
	OR			
10.	Explain the principle and working of strip chart recorders and X-Y			
	recorder.	14M	CO1	L2
	END			

	Hal	I Ticket Number :															
Ĺ															R-19		
	Coc	le: 19A451T III B.Tech.	ISe	me	ster	Rec	ula	Fxc	mir	atio	ns F	ebr	uary	2022			1
					ropr	-							oary				
		(E	lectr		-							-	ng)				
		x. Marks: 70 wer <i>any five</i> full qu	estio	ons b	y ch	oosir	-	ne qu	vestic	on fro	om e	ach	unit (ne: 3 F = 70 Mc		
															Marks	со	Blooms Level
						UN	IIT–I										
1.	a)	Explain in detail at	oout t	the F	Regis	ter C	rgan	izatio	on of	8086	ò.				7M	1	2
	b)	Write short notes of	on El	J-Ex	ecutio	on U	nit of	808	6 mic	ropro	oces	sor.			7M	1	3
							OR										
2.	a)	List and describe b	-				-								7M	1	4
	b)	Write an 8086 Ass ascending and des		•	•	•	Progr	am t	0 SOI	t the	arra	y of	numbe	ers in	7M	1	5
		ascending and des	SCEN	ung '			IT–II								7 101	I	5
3.	a)	Discuss the signific	cance	e of a	atleas			of 80	86.						7M	2	3
	b)	Explain the import					•			808	6.				7M	2	2
						(OR										
4.	a)	Draw the timing d	iagra	am fo	or bu	s op	erati	on cy	/cle (of 80	86.				7M	2	4
	b)	Discuss about the	e ma	ximu	ım m	ode	ope	ratior	n of	8086	with	n rele	evant	block			
		diagram.													7M	2	3
F	c)	What is an A/D as	o vort	- r 2			IT–III			th 00		П			714	2	0
5.	a) b)	What is an A/D co Write a program to			•				•		•		or		7M 7M	3 3	2 2
	b)	white a program to		nace	sich	•	OR		0000	men	Spio	26220	JI.		7 111	5	2
6.	a)	What are maskabl	e and	d noi	n- ma			terru	ots?	Expl	ain b	rieflv			7M	2	2
•	b)	Discuss in brief ab							•	•		•	-		7M	2	3
	,						IT–IV			0							
7.		With the help of dia	gram	s, ex	plain	the 8	8251	USA	RT a	rchite	ecture	e and	l interfa	acing.	14M	3	4
						(OR										
8.	a)	Differentiate betwe	en s	ynch	rono	us ar	nd as	synch	rono	us da	ata c	omm	unicat	ions	7M	3	4
	b)	Describe TTL to R	S232	2C co	onvei	sion									7M	3	2
-							IT–V										
9.	a)	Tabulate the difference)386	micr	opro	cess	or.		7M	4	4
	b)	Discuss in brief al	bout	Pen	tium			r.							7M	4	3
10.	a)	Analyze about the	Prot	octor	d mo		OR the	adva	ncad	nroc	-000	nre			7M	4	4
10.	a) b)	With the help of a								•			80386	3	7M	4	4
	~,				<u>.</u>	•	***El	•					50000		7 101	т	2

	<u> </u>		R-1	9	
	CO	de: 19A45BT III B.Tech. I Semester Regular Examinations February 2	022		
		Advanced Digital Design Concepts	022		
		(Electronics and Communication Engineering)			
	-	ax. Marks: 70	Time: 3		
	An	Iswer any five full questions by choosing one question from each unit (5	X14 = 70 N	narks)	
			Marks	со	Blooms Level
		UNIT-I			Lover
1.	a)	Design a CMOS transistor circuit for 2-input NOR gate and expla	ain		
		its operation	7M	CO1	L6
	b)	Explain Low voltage CMOS logic and interfacing	7M	CO1	L2
		OR			
2.	a)	Draw and explain the circuit diagram of 2-input LS-TTL NAND gate	8M	CO1	L2
	b)	Discuss CMOS/TTL interfacing?	6M	CO1	L2
		UNIT-II			
3.	a)	Explain about Functions and procedures in VHDL.	7M	CO2	L2
	b)	Discuss about the VHDL Packages and Libraries.	7M	CO2	L4
		OR			
4.		Explain about the VHDL operators with examples.	14M	CO2	L2
_	、				
5.	a)	Distinguish variable and Signal assignment statements in VHDL.	7M	CO3	L4
	b)	Explain about the Process statement in VHDL.	7M	CO3	L2
~		OR Distinguish leastich delay and Transport delay model with every le	714		
6.	a) Þ	Distinguish Inertial delay and Transport delay model with example.	7M	CO3	L4
	b)	Illustrate a VHDL model for 2 x 4 decoder.	7M	CO3	L4
7.	2)	UNIT-IV Design a 4-bit comparator using VHDL.	7M	004	
1.	a) b)	Design binary to BCD code converter using VHDL.	7M 7M	CO4	L6
	D)	OR	7 111	CO4	L6
8.	a)	Design a 4X1 Multiplexer using VHDL.	7M	CO4	L6
0.	b)	Design a full adder using VHDL.	7M	CO4	L6
	~)			004	20
9.	a)	Analyze any shift register using VHDL.	10M	CO5	6
	b)	Distinguish between Latches and Flipflops	4M	CO5	L4
	- /	OR		•	
0.	a)	Discuss about Synchronous design methodology?	7M	CO5	L2
	b)	Briefly explain Impediments to synchronous design?	7M	CO5	L2
	,	***END***			

Hall Ti	cket Number :											[
Code: 1	9A452T	·											R-19	
	III B.Tech.	l Semes	ter R	egu	lar I	Exar	ninc	atior	ns Fe	ebru	ary	2022		
	ŀ	Antenn	as c	Ind	Wc	ive	Pro	pa	gat	ion				
	-	ectronics	and	l Coi	mm	unic	atio	n En	gine	erin	g)	- .	0.11	
Max. M Answer	any five full que	estions by	choo		ON6 ****		estio	n froi	m ec	ich u	unit (ne: 3 Ho 70 Mai	
												Marks	СО	Blooms Level
			U	INIT	-1									
1. a)	Define Anten	ina? Wi	th th	e he	lp o	f ne	at di	iagra	am e	expla	ain			
	the basic rad		•	tion	anc	l pri	ncip	le c	of ra	diati	on			
	mechanism i	n anteni	nas.									7M	CO1	L3
b)	Derive the fa	r electric	c and	lma	gne	tic fi	eld	com	pon	ents	of			
	a halfwave d	iepole.										7M	CO1	L4
				OR	_				_					
2. a)	Define and e			-										
	the relations	hip betv	veen	dire	ectiv	vity a	and	ape	rture	e of	an		004	
	antenna.	_	_	_									CO1	L1
b)	State and pr	ove Red	cipro	city	The	eore	m.					7M	CO1	L2
			U	NIT	-11									
3. a)	Explain the c	•	•					atior	n pri	ncip	le.			
	Show its app	olication	with	n an	exa	mpl	e.					7M	CO2	L1
b)	Explain the s	•						ray.	Dei	rive	an			
	expression f	or anter	nna a	-		ctor.						7M	CO2	L2
				OR										
4. a)	Draw a Yag		-	and	d ex	plai	n its	s cc	onsti	ructi	on		000	
	and operatin	0.	•		_	_	_	_					CO2	L2
b)	Obtain the D	irectivit	y exp	ores	sior	n for	Bro	bads	side	arra	ay.	7M	CO2	L3
				NIT-										
5. a)	•	const	ructi	on	and	d p	rinc	iple	of	hc	orn			
	antenna.											7M	CO3	L2
b)	A pyramid							•	•	pertu				
	dimensions													
	frequency of						ga	in, ł	half	pow	/er			
	beam widths	s and ef	tectiv									7M	CO3	L3
c ì			-1.4	OR			- P	_ 1 _ ^	- 1 -					
6. a)	Draw the ge									na a	and	714	000	
	Give the app	Jucation	IS OF	me	san	ie a	nter	ma.				/ IVI	CO3	L3

	b)	A transmitting antenna and a receiving antenna are separated by a distance of 10 ³ m. If the transmitting antenna radiates a power of 100W, calculate the available power at the receiving antenna if the D of transmitting antenna is 1.64 and effective area of			
		receiving antenna is 0.25 m ^{2.}	7M	CO3	L4
7.	a)	Explain the ground waves propagation.	7M	CO4	L1
	b)	Calculate the distance beyond which the earth's curvature to be accounted at frequency of i) 100KHz			
		ii) 1MHz iii) 10MHz	7M	CO4	L2
		OR			
8.	a)	Discuss the different modes of propagation in detail.	4M	CO4	L1
	b)	Explain the electric and magnetic field effects of earth			
		in detail.	7M	CO4	L2
	c)	Compare and contrast Ground wave, space waves			
		and sky waves	ЗM	CO4	L2
		UNIT-V			
9.	a)	Draw the structure of lonosphere with layers and their			
		heights.	7M	CO5	L1
	b)	With neat sketch, explain about Ray path, skip			
		distance in Sky Wave propagation.	7M	CO5	L2
		OR			
10.	a)	Define MUF. Explain its significance.	7M	CO5	L1
	b)	Write technical notes on			
		i .Multihop propagation ii. Virtual height. ****END****	7M	CO5	L3

	c	ode: 19A454T	R-19
	Ŭ	III B.Tech. I Semester Regular Examinations February 202	22
		Digital Communication	
		(Electronics and Communication Engineering)	
		Nax. Marks: 70 Inswer any five full questions by choosing one question from each unit (5x1 *********	Time: 3 Hours 4 = 70 Marks)
			Marks CO
		UNIT-I	
۱.	a)	Draw the block diagram of digital communication system and explain each blo in detail.	ock 7M
	b)	Find the output signal power due to Quantization noise in a PCM system.	7M 7M
	0)	OR	7 101
2.	a)	Consider a signal x(t), having $ X_{max} = 16$, $x^2 = 9$ and band-limited to 4kl	Ηz.
	,	Calculate the sampling rate and PCM data rate for S/N_q 40dB.	7M
	b)	With a neat block diagram, explain the operation of delta modulation system.	7M
3.	a)	Explain with neat diagrams coherent BFSK transmitter and receiver. A explain single space diagram for coherent BFSK systems.	lso 7M
	b)	The bit stream $d(t)$ is to be transmitted using DPSK. If $d(t)$ is 0010100110 Determine $b(t)$ and draw the waveforms.	10. 7M
		OR	
	a)	Draw and explain the operation of transmitter and receiver of a coherent FSK	
	b)	The bit stream 001010011010 is to be transmitted using BFSK. Sketch transmitted waveform.	he 7M
_			014
	a)	What is mutual information? Derive mutual information I(<i>xi, yj</i>).	6M
	b)	Calculate the bandwidth limits of Shannon-Hartley theorem. OR	8M
5.	a)	Explain Huff-man coding with an example.	7M
	a) b)	Explain Shannon-Fano algorithm with an example.	7M 7M
	5)		7101
7 .		Explain about block codes in which each block of k message bits encoded in	nto
		block of n>k bits with an example.	14M
		OR	
3.		Prove $CH^{T} = 0$ where C is code word and H is parity check matrix.	14M
Э.		State and prove the important theorem of cyclic code to generate copolynomial $V(x) = r(x) + x^{n-k} D(x)$.	de 14M
		OR	
).		For a non-systematic rate $\frac{1}{2}$ code given by g(1,1)=(1,1,1), g(1,2)=(1,0,1)	
		Draw the tree graph, trellis and state diagram.	4 4 5 4
			14M