Hall Ticket Number: R-20 Code: 20A25AT III B.Tech. I Semester Regular Examinations Dec 2022/Jan 2023 Distribution of Electrical Power (Electrical and Electronics Engineering) Max. Marks: 70 Time: 3 Hours ****** Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries **Two mark.** 3. Answer ALL the questions in Part-A and Part-B **PART-A** (Compulsory question) (5 X 2 = 10M)1. Answer *all* the following short answer questions CO BL a) Define Demand factor. Why the value of demand factor is important in 1 L3 distribution network? b) Enumerate the merits and demerits of Underground distribution system. 2 L2 c) List different equipment used in distribution substation. 3 L1 d) Why shunt capacitor banks used for compensation are connected in Δ ? 4 L2 Not in Y e) What is the role of SCADA L1 5 **PART-B** Answer five questions by choosing one question from each unit ($5 \times 12 = 60 \text{ Marks}$) Marks CO BL UNIT-I 2. a) Write the relationship between load factor and loss factor during peak loading and off peak loading on the network. 6M L2 b) A Generating Station has a connected load of 43MW and a maximum demand of 20MW, the units generated being 61.5 10⁶ per annum. Calculate (i) The Demand Factor and (ii) Load Factor 6M L3 OR How do you classify the Loads and give its characteristics? 12M L1 **UNIT-II** 4. a) Discuss the requirement and design consideration of Distribution System. 6M 2 L3 b) A Two-Wire distributor 1200m long is loaded as shown in Fig(1). The power factor at the two load points refer to the voltage at R. The impedance of each line is (0.15+i0.2) Calculate the (i) Sending-End Voltage (ii) Current and Power Factor. The voltage at point R is 230v. P 600 m-600 m 60 A 100 A 0.9 p.f. lagging 0.8 p.f. lagging

Fig(1):AC Two-Wire Distributor

3.

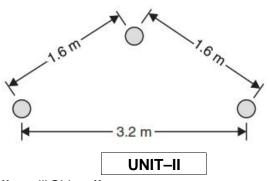
Page 1 of 2

2 L3

6M

Code: 20A25AT

OR


		— · · · · · · · · · · · · · · · · · · ·			
5.	a)	List out and explain about the factors effecting primary feeder voltage levels.	6M	2	L2
	b)	Compare A.C. and D.C. Distribution System.	6M	2	L2
	. ,	UNIT-III		_	
6.		Enumerate various factors affecting the selection of a site for substation. Explain the procedure of obtaining optimal location of a substation by network flow techniques.	12M	3	L1
_		OR			
7.		Briefly explain any four types of bus bar switching schemes in a substation.	12M	3	L1
		UNIT-IV			
8.	a)	With the help of detailed algorithm explain the practical procedure to determine the optimal capacitor location in a distribution network.	6M	4	L2
	b)	Assume that a three phase 500HP 50Hz 6.6KV Y connected induction motor has a full load efficiency of 88%, a lagging power factor of 0.75 and is connected to a feeder. It is desired to correct the power factor of the load to a lagging power factor of 0.9 by connecting capacitors at the load. Determine the following: (i) The rating of capacitor bank in KVArs. (ii) The capacitance of each unit if the capacitors are connected in delta	6M	4	L3
		OR			
9.	a)	How do you justify economically the connection of capacitors for the improvement of Power Factor?	6M	4	L5
	b)	Explain the effects of series and shunt capacitors in distribution systems.	6M	4	L2
4.0	,	UNIT-V			
10.	a)	What are the objectives and benefits of Distribution Automation?	6M	5	L1
	b)	What are the functions of distribution SCADA	6M	5	L1
		OR			
11.	a)	Discuss about project planning of Distribution Automation (DA).	6M	5	L2
	b)	Write short notes on (i) RTUs (ii) PSTN	6M	5	L2
		*** End ***			

Hall Ticket Number: R-20 Code: 20A253T III B.Tech. I Semester Regular Examinations Dec 2022/Jan 2023 **Electric Power Transmission and Switch Gear** (Electrical and Electronics Engineering) Max. Marks: 70 Time: 3 Hours ***** Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries **Two mark.** 3. Answer ALL the questions in Part-A and Part-B **PART-A** (Compulsory question) 1. Answer *all* the following short answer questions BLCO a) Write the equation for internal flux linkages and external flux linkages? 1 1 b) Write the ABCD parameters of short transmission line? 2 2 c) List the disadvantages of corona? 3 2 d) Write the equation for Insulation resistance of a cable? 4 1 e) What do you mean by arc splitting? 5 1

PART-B

Answer *five* questions by choosing one question from each unit ($5 \times 12 = 60 \text{ Marks}$)

			Marks	СО	BL
		UNIT-I			
2.	a)	Explain composite conductors?	6M	1	2
	b)	A conductor consists of seven identical strands each having a radius of r. Determine the factor by which r should be multiplied to find the self GMD of			
		the conductor.	6M	1	3
		OR			
3.	a)	Derive the inductance of three phase symmetrical conductors?	6M	1	2
	b)	Determine the inductance of a 3-phase line operating at 50 Hz and conductors			

arranged as follows. The conductor diameter is 0.8 cm

4. a) Explain i)Ferranti effect ii)Skin effect

b) Determine the sending end voltage, current, power factor of a 1-phase 50 Hz, 76.2 kV transmission delivering a load of 12 MW at 0.8 p.f. The line constants are R = 25 ohm, inductance 200mH and capacitance between lines $2.5\mu F$. Also determine the regulation and of transmission. Use nominal-method. Draw phasor diagram

6M 2 2

2

3

6M

6M

OR

a)	Explain the effect of power factor on efficiency and regulation of transmission line?	6M	2	3
b)	A 400 V 3-phase 4-wire system supplies the following loads: Phase R-40 A at p.f. 0.8 lagging, phase Y-30 A at unity p.f. and phase B-20 A at 0.8 leading. The resistance of each conductor is 0.2 ohm and of the neutral 0.4 ohm.			
	Determine the load voltages	6M	2	4
	UNIT-III			
a)	Derive the critical visual disruptive voltage?	6M	3	2
b)	A conductor with 2.5 cm dia is passed centrally through a porcelain bushing $r=4$ having internal and external diameters of 3 cm and 9 cm respectively. The voltage between the conductor and an earthed clamp surrounding the porcelain is 20 kV r.m.s. Determine whether corona will be present in the air			
	·	6M	3	4
-\		CN4	^	0
	·	6IVI	3	2
D)	804kg/km. Calculate the maximum sag if the ultimate tensile strength of the	6M	3	4
		OIVI	3	7
a)		6M	4	2
		6M	4	2
,	OR			
	A 3-phase, 3-core, metal sheathed cable gave the following results on test for capacitance:			
	(i) Capacitance between two conductors bunched with the sheath and the third conductor 0.4 μF per km.			
	(ii) Capacitance between bunched conductors and sheath 0.625 μF/km.			
	any two bunched conductors and the third conductor if the sheath is			
		12M	4	4
			-	
a)	Explain the following terms			
·	(i) Restriking voltage (ii) Recovery voltage (iii) Circuit breaker (iv) Fuse	6M	5	2
b)	In a system of 132 kV, the line to ground capacitance is 0.01 µF and the inductance is 5 henries. Determine the voltage appearing across the pole of a			
	C.B. if a magnetising current of 5 amps (instantaneous value) is interrupted.			
	Determine also the value of resistance to be used across the contacts to			
		6M	5	3
	·	12M	5	2
	*** End ***		J	_
	b) a) b) a) b)	line? b) A 400 V 3-phase 4-wire system supplies the following loads: Phase R-40 A at p.f. 0.8 lagging, phase Y-30 A at unity p.f. and phase B-20 A at 0.8 leading. The resistance of each conductor is 0.2 ohm and of the neutral 0.4 ohm. Determine the load voltages UNIT-III a) Derive the critical visual disruptive voltage? b) A conductor with 2.5 cm dia is passed centrally through a porcelain bushing r = 4 having internal and external diameters of 3 cm and 9 cm respectively. The voltage between the conductor and an earthed clamp surrounding the porcelain is 20 kV r.m.s. Determine whether corona will be present in the air space round the conductor? OR a) Explain about static shielding of insulators? b) An overhead transmission line has a span of 220m, the conductor weighing 804kg/km. Calculate the maximum sag if the ultimate tensile strength of the conductor is 5,758kg.Assume safety factor 2. UNIT-IV a) Explain the capacitance grading of cable? OR A 3-phase, 3-core, metal sheathed cable gave the following results on test for capacitance: (i) Capacitance between two conductors bunched with the sheath and the third conductor 0.4 µF per km. (ii) Capacitance between bunched conductors and sheath 0.625 µF/km. Determine the capacitance (a) between any two conductors, and (b) between any two bunched conductors and the third conductor if the sheath is insulated. (c) Also calculate the charging current per phase per km. when it is connected to 10 kV, 50 Hz supply. UNIT-V a) Explain the following terms (i) Restriking voltage (ii) Recovery voltage (iii) Circuit breaker (iv) Fuse b) In a system of 132 kV, the line to ground capacitance is 0.01 µF and the inductance is 5 henries. Determine the voltage appearing across the pole of a C.B. if a magnetising current of 5 amps (instantaneous value) is interrupted. Determine also the value of resistance to be used across the contacts to eliminate the restriking voltage. OR	iline? b) A 400 V 3-phase 4-wire system supplies the following loads: Phase R-40 A at p.f. 0.8 lagging, phase Y-30 A at unity p.f. and phase B-20 A at 0.8 leading. The resistance of each conductor is 0.2 ohm and of the neutral 0.4 ohm. Determine the load voltages UNIT-III	line? b) A 400 V 3-phase 4-wire system supplies the following loads: Phase R-40 A at p.f. 0.8 lagging, phase Y-30 A at unity p.f. and phase B-20 A at 0.8 leading. The resistance of each conductor is 0.2 ohm and of the neutral 0.4 ohm. Determine the load voltages a) Derive the critical visual disruptive voltage? b) A conductor with 2.5 cm dia is passed centrally through a porcelain bushing r = 4 having internal and external diameters of 3 cm and 9 cm respectively. The voltage between the conductor and an earthed clamp surrounding the porcelain is 20 kV r.m.s. Determine whether corona will be present in the air space round the conductor? COR a) Explain about static shielding of insulators? b) An overhead transmission line has a span of 220m, the conductor weighing 804kg/km. Calculate the maximum sag if the ultimate tensile strength of the conductor is 5,758kg.Assume safety factor 2. COR c) A 3-phase, 3-core, metal sheathed cable gave the following results on test for capacitance: (i) Capacitance between two conductors bunched with the sheath and the third conductor 0.4 μF per km. Determine the capacitance (a) between any two conductors, and (b) between any two bunched conductors and the third conductor if the sheath is insulated. (c) Also calculate the charging current per phase per km. when it is connected to 10 kV, 50 Hz supply. c) Connected to 10 kV, 50 Hz supply. a) Explain the following terms (i) Restriking voltage (ii) Recovery voltage (iii) Circuit breaker (iv) Fuse b) In a system of 132 kV, the line to ground capacitance is 0.01 μF and the inductance is 5 henries. Determine the voltage appearing across the pole of a C.B. if a magnetising current of 5 amps (instantaneous value) is interrupted. Determine also the value of resistance to be used across the contacts to eliminate the restriking voltage. OR Explain the operation of Vacuum circuit breakers and Minimum oil circuit breaker?

Hall Ticket Number :							1			٦	
Code: 20AE5AT								R-2	20		
III B.Tech. I S	Semester F	Reaulai	r Exam	ninatio	ons E	Dec 20:	22/Ja	n 2023			
= =	Humar	_					,				
		mmon			_						
Max. Marks: 70		.	*****	·				Time: 3	3 Hour	3	
Note: 1. Question Pape	er consists o				nd P a	rt_R)					
2. In Part-A, each		_			ia i a	II (- D)					
3. Answer ALL	_				-B						
		<u>I</u>	PART-A	<u>\</u>							
		(Compu	ılsory q	uestion	1)						
Answer all the following		er questi	ons	(5 X 2	2 = 10	OM)		С	O E	3L	
a) List the functions of									1	1	
b) Define Human Reso	ources Inforr	mation S	systems	-					1	1	
c) Define Selection.									1	1	
d) Define Career Deve	•								1	1	
e) Define Performance	Appraisal.								1	1	
۸			PART-E			• • • •	- 10	(0.34. 1	`		
Answer <i>five</i> questi	ons by choo	sing one	questio	on from	i eaci	n unit (:	5 x 12 =	= 60 Mark		00	DI
		LINI	IT–I	1					Marks	СО	BL
Discuss in detail the o	competitive (_ encina	HRM	1.			12M	1	2
		•)R	3							
Describe in detail, the	ethical asp	ects of F	IRM.						12M	1	2
		UNI	T–II								
Discuss in detail, th	•	ice of H	luman	Resou	rces	Plannin	g with	specific			
reference to the IT Inc	dustry.	_	_						12M	2	2
D'anna la datali da)R	I.I. D.	. •	1 - 11					
Discuss in detail, the Job design.	various Fa	ctors an	ecting .	Job De	sign	and the	appro	acnes to	12M	2	2
oob design.		UNI	T_III	1					12111		_
Discuss in detail, the	process and			ı ruitmer	nt.				12M	3	2
	•	C	R								
Discuss in detail, the	various barr	iers to e	ffective	selecti	on.				12M	3	2
		UNI	T–IV								
Discuss in detail the v	arious meth		_						12M	4	2
			PR								
Describe the various	impediments			barrier	for e	ffective t	raining		12M	4	2
Dogoribo in detail the	0000004 54		T–V	المعالمة	ion C	onto:			4014	r	2
Describe in detail, the	; concept of	• .	olicy in t DR	ne mal	ian C	ontext.			12M	5	2
Discuss in detail, the	importance			s to eff	active	Industr	ial Rala	ations	12M	5	2
Pioodoo in dotali, the	portance	and app	Juonio	S to Cile		muusti	iai i (Cit	A110110.	12171	J	_

*** End ***

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

	На	Il Ticket Number :		7	
	Cod	de: 20A252T	-20		
		III B.Tech. I Semester Regular Examinations Dec 2022/Jan 2023			
		Power Electronics			
	Ma	(Electrical and Electronics Engineering) x. Marks: 70 Time	: 3 Hour	ς	
	7710	******	, 0 11001.	J	
	Note	e: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two mark.			
		3. Answer ALL the questions in Part-A and Part-B			
		<u>PART-A</u>			
	_	(Compulsory question)			
1.	Ans	swer all the following short answer questions $(5 \times 2 = 10M)$	СО	BL	
	a)	Define latching current of SCR.	1	1	
	b)	Specify the purpose of snubber circuit.	2	2	
	c)	Illustrate Delay angle in converter circuits	3	3	
	d)	Define duty-cycle.	4	1	
	e)	Distinguish between ON-OFF control and phase control.	5	4	
		PART-B			
	Aı	nswer <i>five</i> questions by choosing one question from each unit (5 x 12 = 60 I	-		
			Marks	СО	BL
_		UNIT-I			
2.		Explain the operation of IGBT with the help of neat structural	1011		_
		diagram and suitable waveforms	12M	1	2
_	,	OR COOR	01.4		
3.	•	Draw and explain the VI characteristics of SCR.	6M	1	2
	b)	Explain the principle of operation and characteristics of MOSFET	6M	1	2
		UNIT-II			
4.	a)	Illustrate the Over current protection by fast acting current			
		limiting fuse.	6M	2	2
	b)	Demonstrate the Over voltage protection by Metal Oxide			
		Varistors.	6M	2	2
		OR			
5.		Analyze the Improving of dv/dt rating with Cathode and short			
		di/dt improvement by high gate current with illustration.	12M	2	4
		UNIT-III			
6.		Describe the working of three phase fully controlled bridge			
		converter. And derive the expressions for average output	4054		
		voltage and rms output voltage.	12M	3	3

Code: 20A252T

OR

7.	a)	Analyse the advantages of single phase bridge converter over single phase mid-point converter?	6M	3	4
	b)	Specify the function of freewheeling diodes in controlled rectifier.	6M	3	4
		UNIT-IV			
8.		Describe the working principle of boost converter with necessary circuit and waveforms.	12M	4	2
		OR			
9.		Draw the circuit diagram of voltage reversal chopper and explain its working principle with necessary waveforms.	12M	4	2
		UNIT-V			
10.		For the following different modulation techniques, show the operation of PWM inverters. (i) Single PWM (ii) Multiple PWM	12M	5	4
		OR			
11.		With suitable phase and line voltage waveforms of 3 VSI, explain its operation.	12M	5	4
		*** End ***			

	Ha	II Ticket Number :		7	
l	Cor	de: 20A25DT	20		
	Coc	III B.Tech. I Semester Regular Examinations Dec 2022/Jan 2023		_	
		Renewable Energy Systems			
		(Electrical and Electronics Engineering)	0.1.1		
	Ma	x. Marks: 70 ******** Time:	3 Hours	S	
	Note	e: 1. Question Paper consists of two parts (Part-A and Part-B)			
		2. In Part-A, each question carries Two mark.			
		3. Answer ALL the questions in Part-A and Part-B PART-A			
		(Compulsory question)			
1.	Ans	swer <i>all</i> the following short answer questions (5 X 2 = 10M)	CO	BL	
	a)	Compose the environmental impact of fossil fuels	1	4	
	b)	State the principle involved in generating solar power.	2	2	
	c)	Analyze the factors involved in estimation of wind energy at a site?	3	4	
	•	What is tidal energy?	4	1	
	e)	List the types of biomass conversion.	5	1	
	,	PART-B			
		Answer <i>five</i> questions by choosing one question from each unit (5 x 12 = 60 Mar	ks)		
			Marks	СО	BL
_	,	UNIT-I			
2.	a)	Write the important differences between renewable and	71.4		
	L۱	nonrenewable source	7M	1	1
	b)	What are the reasons for variation in the amount of solar energy reaching earth surface?	5M	1	1
		OR	JIVI	I	1
2	2)		7M	4	0
ა.	-	Examine the working of a pyranometer. Explain in detail about color radiation on titled curface.		1	3
	b)	Explain in detail about solar radiation on titled surface.	5M	1	1
4.	2)	What are the main components of a flat plate solar collector?	6M	0	0
ᅻ.	a) b)	With a neat schematic diagram, explain working of a solar water		2	2
	D)	heating system	6M	2	2
		OR	Oivi	2	۷
5	a)				
J.	u)	(i) Solar distillation, (ii) Photovoltaic energy conversion.	6M	2	2
	b)	Classify solar energy storage systems. Describe in brief any		_	_
	-,	one of the different storage systems.	6M	2	4

Code: 20A25DT

UNIT-III

		Old III			
6.	a)	What is Wind power and derive the equation of power in wind	6M	3	3
	b)	Explain about the components of wind power plant with			
		necessary diagram.	6M	3	2
		OR			
7.	a)	Explicate in brief the performance characteristics of wind			
		machines.	6M	3	3
	b)	Briefly explain about the aerodynamics wind turbine.	6M	3	2
		UNIT-IV			
8.	a)	Explain the different economic and environmental			
		considerations of tidal power plant.	6M	4	1
	b)	Describe in detail the operation of double basin type tidal power			
		plant.	6M	4	3
		OR			
9.	a)	List three legal or planning issues that are important for the			
		deployment of wave power devices.	5M	4	4
	b)	Explain the working principle of OTEC plants	7M	4	2
		UNIT-V			
10.	a)	Describe in detail how biomass conversion takes place	7M	5	2
	b)	Explain the combustion characteristics and economic aspects			
		of biogas.	5M	5	2
		OR			
11.	a)	Explain a hot dry rock type Geothermal resource power plant.	5M	5	2
	b)	Describe in detail the operation dry binary cycle geothermal			
		power plant.	7M	5	2

*** End ***

Hall Ticket Number: R-20 Code: 20A251T III B.Tech. I Semester Regular Examinations Dec 2022/Jan 2023 **Linear Control Systems** (Electrical and Electronics Engineering) Max. Marks: 70 Time: 3 Hours Note: 1. Question Paper consists of two parts (**Part-A** and **Part-B**) 2. In Part-A, each question carries **Two mark.** 3. Answer ALL the questions in Part-A and Part-B **PART-A** (Compulsory question) 1. Answer **all** the following short answer questions $(5 \times 2 = 10M)$ CO BL a) Define control system with examples. 1 1 b) What is an order of a system? 2 c) What is Routh Hurwitz Stability Criterion? 3 d) What is the necessity of compensation? 4 e) What are the characteristics of State Transition Matrix? 5 **PART-B** Answer five questions by choosing one question from each unit ($5 \times 12 = 60$ Marks) Marks CO BL UNIT-I Determine the Transfer function for the Mechanical Network X2(s)/F(s)12M 1 2 OR 3. a) Write a short note on various rules in Block Diagram Algebra. 7M 2 b) What does the importance of Feedback system also discuss any one of the characteristics of Feedback system? 5M **UNIT-II** 4. a) A unity feedback system is characterized by the open loop transfer function G(s) = 10/s (0.1s+1). Determine the static error constants for the system. Obtain the steady state error when the system is subjected to an input given by the polynomial $r(t) = a_0 + a_1 t + a_2 t^2/2$ 12M 2

OR

2.

Code: 20A251T

Compute the time domain Specifications in the Unit ste 5. ^{12l} 12M R(S)response of Given Second order System. 2 2

> UNIT-III unity feedback system with open-

loop transfer function
$$G(s) = \frac{k}{s(s+2)(s+4)}$$

Sketch the root locus

6.

12M 3 2

7. a) Comment the statbility for a given characteristic equation by R-H criterion $4S^4+10S^3+2S^2+3S+6=0$

6M 3 2

b) Open loop transfer function for a unity feedback control system $G(s)=100/(S^2(S+30))$ Draw polar plot?

6M 3 2

UNIT-IV edback system haviring an open loop transfer 8. $G(s) = \frac{1}{s(1+0.2s)(1+0.05s)}$ Sketch the Magnitude and Phase plot using Bode plot.

12M

OR

Design a ray compensator to get the follow ecifications. Damping satio $\zeta=0.4$, settling time $\int_{tss}^{t}=10^{ting}_{sec}$, splicitly error constant $Kv=5sec^{-1}$ for the system whose open pop transfer 9. function is $G(s) = \frac{K}{s(s+1)(s+4)}$ With unity feedback using Bode plot.

12M

2

2

UNIT-V

10. Derive state space model of the armature-controlled DC servo motor.

12M 5

OR

11. a) Determine whether the following system is controllable and Observable.

$$A = \begin{bmatrix} -5 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & -2 \end{bmatrix} B = \begin{bmatrix} 0 \\ -1.414 \\ 0 \end{bmatrix}$$

$$C = \begin{bmatrix} -0.5345 & -1.4142 & 0.7071 \end{bmatrix} \quad D = \begin{bmatrix} 0 \end{bmatrix}$$

6M 5

b) Obtain the state model in controllable canonical form for the system described by the differential equation $3y^{II}+y^{I}+2y=u^{I}-2u$.

6M

5 2

*** End ***