F	Hall Ticket Number :				
			R-20		
	o de: 20A353T P. Tach, J. Samastar, Pagular & Supplementary, Evaminations, F		bor (0002	
111	B.Tech. I Semester Regular & Supplementary Examinations E Design of Machine Elements - II	Jecen		2023	
	(Mechanical Engineering)				
Mo	ax. Marks: 70	Tim	e: 3 H	ours	
No	**************************************				
INO	 te: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two marks. 				
	3. Answer ALL the questions in Part-A and Part-B				
	<u>PART-A</u>				
	(Compulsory question)	,		~ ~	
	wer all the following short answer questions (5 $X = 10$ Marks)		CO	BL
•	strate the distribution of shear stresses in the wire of spring.			CO1	4
b) Dif	ferentiate full and partial journal bearings.			CO2	2
c) Wh	nat do you mean by radial load factor?			CO3	2
d) Wh	nat is Lewis form factor how does it vary with number of teeth	n on ge	ear?	CO4	1
e) Na	me the materials for crankshafts.			CO5	1
	PART-B				
	Answer <i>five</i> questions by choosing one question from each unit (5 x 12	$c = 60 \mathrm{M}$	[arks)		
		Marks	СО	BL	-
	UNIT-I				
2.	Design a belt drive to transmit 110 kW for a system				
	consisting of two pulleys of diameters 0.9 m and 1.2 m,				
	centre distance of 3.6 m, a belt speed 20 m / s,				
	coefficient of friction 0.3, a slip of 1.2% at each pulley				
	and 5% friction loss at each shaft, 20% over load.	12M	CO1		L4
	OR				
3.	Design a helical compression spring for a spring-load	ded			
	safety valve for the following data:				
	Operating pressure = 1 MPa				
	Maximum pressure when the valve blows off freely=1.1 M	Pa			
	Maximum lift of valve when the pressure is $1.1 \text{ MPa} = 6 \text{ I}$	nm			
	Diameter of valve seat = 100 mm				
	Maximum shear stress = 360 MPa				
	Modulus of rigidity = 84 GPa				
	Spring index = 5.5	12M	CO1		L4
			001		L 7

12M CO2

12M CO2

UNIT-II

4. Design a journal bearing for a centrifugal pump from the following data : Load on the journal = 20 000 N; Speed of the journal = 900 r.p.m.; Type of oil is SAE 10, for which the absolute viscosity at $55^{\circ}C = 0.017$ kg / m-s; Ambient temperature of oil = $15.5^{\circ}C$; Maximum bearing pressure for the pump = 1.5 N / mm². Calculate also mass of the lubricating oil required for artificial cooling, if rise of temperature of oil be limited to $10^{\circ}C$. Heat dissipation coefficient = 1232 W/m²/°C.

OR

5. Design the main bearings of a stationary slow speed steam engine to support a load of 30 kN. The engine speed is 200 rpm. Select suitable oil for satisfactory operation. Also determine the minimum film thickness and amount of oil to be supplied. Is artificial cooling required and if so, calculate the amount of heat to be removed.

UNIT-III

- 6. A shaft rotating at constant speed is subjected to variable load. The bearings supporting the shaft are subjected to stationary equivalent radial load of 3 kN for 10 per cent of time, 2 kN for 20 per cent of time, 1 kN for 30 per cent of time and no load for remaining time of cycle. If the total life expected for the bearing is 20 × 10⁶ revolutions at 95% reliability, calculate dynamic load rating of the ball bearing.
 - OR
- 7. A transmission shafting is supported on two bearings A and B, 300 mm apart. The bearing 'A' receives a 2000 N and a thrust load of 1000 N while bearing 'B' receives a radial load of 3000 N. The life may be computed based on working condition of 10 hours/day, 5 days/week for 2 years. The shaft rotates at 1000 rpm. The loads have been accurately calculated and only minor shocks are present. The shaft diameter based on strength is 35 mm. Select suitable ball-bearings for shaft at A and B.

L6

L6

12M CO3 L6

L6

L6

L6

L1

L4

UNIT-IV

A pair of spur gears is to be designed as per Lewis 8. beam strength. The pinion rotates at 800 rpm and transmits 6 kW to a gear rotating at 200 rpm. Starting torque of electric motor supplying power to pinion can be taken as 140% of rated torque. For pinion and gear both, allowable bending stress is 150 MPa. Take face width, b = 12 m, where m is module. Lewis form factor y = [0.154 - (0.912 / z)] where, z is the number of teeth Velocity factor, $C_v = [3 / (3 + v)]$ Take factor of safety of 2. 12M CO4

OR

9. A pair of helical gears consists of 24 teeth pinion meshing with 72 teeth gear. Normal pressure angle is 20°, and helix angle is 24°. The pinion rotates at 720rpm. Normal module of gear is 5 mm and face width is 50 mm. Both, pinion and gear are made of steel with σ_{ut} = 600 Mpa. Gears are heat treated to a surface hardness of 360 BHN. What power can be transmitted by gears if service factor is 1.4 and factor of safety is 2? Assume that velocity factor accounts for the dynamic load. 12M CO4

UNIT-V

- 10. Design a cast iron piston for a single acting four stroke engine for the following data: Cylinder bore = 100 mm; Stroke = 125 mm; Maximum gas pressure = 5 N/mm^2 ; Indicated mean effective pressure = 0.75 N/mm^2 ; Mechanical efficiency=80%; Fuel consumption=0.15kg per brake power per hour ; Higher calorific value of fuel = 42×10^3 kJ/kg ; Speed = 2000 r.p.m. Any other data required for the design may be assumed. 12M CO5 OR
- Describe how an I-section is designed for a connecting 11. a) rod. 8M CO5
 - b) Explain, how reversed bending loads on crankshaft cause fatigue failure?

4M CO5

	Hall Ticket Number :	R-2	>0	7
	Code: 20A55FT			
II	I B.Tech. I Semester Regular & Supplementary Examinations De	cembe	r 2023	3
	Data Structures using Python			
Ν	(Common to CE &ME) Nax. Marks: 70	Time: 3	3 Hour	s

Ν	ote: 1. Question Paper consists of two parts (Part-A and Part-B)			
	2. In Part-A, each question carries Two marks.			
	3. Answer ALL the questions in Part-A and Part-B			
	<u>PART-A</u> (Compulsory question)			
		<u> </u>	Ы	
	 Answer <i>all</i> the following short answer questions (5 X 2 = 10M) a) Define Data Structure 	CO 1	BL L1	
	b) Define stack data structure	2		
	c) Write recursive function for Fibonacci series		L1	
	d) Define binary tree	4	L1	
	e) Define tries	5	L1	
	PART-B	0		
	Answer five questions by choosing one question from each unit (5×12	2 = 60 M	arks)	
		Marks	CO	В
	UNIT-I			
	Explain Multi dimensional arrays in python	12M	1	
	OR	4014		
	Explain Python - Amortized Analysis UNIT-II	12M	1	
	Explain the stack and write a program to implement stack	12M	2	
	OR	12101	2	
	Explain implementation of Queue ADT using Python List with examples	12M	2	
	UNIT-III			
	Explain the concept of binary search and write a program to implement			
	binary search using recursion	12M	3	
	OR			
	Explain Quick sort? Sort the following elements using merge sort. Below is	4014	0	
	example for Your reference 45 ,23 ,20 ,50, 70, 24, 33, 43, 47	12M	3	
	With a neat diagram explain the structure of Priority Queue with examples			
	and also give its applications	12M	4	
	OR			
	Define heap. Explain heap sort with example	12M	4	
	UNIT-V			
	Which pattern matching algorithm scans the characters from right to left?		_	
	Explain it with suitable example. OR	12M	5	
~)				
a)	What is a binary trie? Construct a binary trie with elements: 0001, 0011,	6M	5	
a) b)		6M 6M	5 5	

	Н	all Ticket Number :			
		de: 20A25FT	R-20		
		.Tech. I Semester Regular & Supplementary Examinations De	cember 2	2023	
		Electric Vehicles			
		(Common to ME and ECE)	T:		
	MO	x. Marks: 70 ********	Time: 3 H	ours	
	Not	e: 1. Question Paper consists of two parts (Part-A and Part-B)			
		2. In Part-A, each question carries Two marks.			
		3. Answer ALL the questions in Part-A and Part-B			
		<u>PART-A</u> (Compulsory question)			
1. Ar	nswe	r all the following short answer questions $(5 \times 2 = 10M)$		со	BL
		rentiate between hybrid vehicle and plug in hybrid vehicle.		CO1	L2
,		t is Propulsion power?		CO2	L1
c)	Defir	ne state of charge.		CO3	L1
,		e the criteria for selection of EV motors.		CO4	L1
e)	Defir	ne converter.		CO5	L1
	٨	<u>PART-B</u> nswer <i>five</i> questions by choosing one question from each unit (5 x 12	2 - 60 Mark	(e.)	
	~	iswel we questions by choosing one question nom each unit (5 x 1)	Marks	CO	BL
		UNIT-I			
2.	a)	With help of Block Diagram explain major components of electric vehicle	6M	CO1	L1
	b)	Compare petrol and electric vehicle with their merits and demerits.	6M	CO1	L2
3.	2)	OR Explain about the history of hybrid and electric vehicles.	014	004	
3.	a) b)	Write short notes of future of EVs.	8M	CO1	L2
	0)		41/1	CO1	LI
4.	a)	Explain the laws of motion of vehicle.	6M	CO2	L2
	b)	Explain the concept of energy consumption of EV.	6M	CO2	L2
_	、	OR	0		
5.	a)	Which are the resistive forces that retard the motion of a four wheel vehicle Show with a diagram.	e? 6M	CO2	L2
	b)	Write short notes on i) specific energy ii) specific power	6M	CO2	
		UNIT-III			
6.	a)	What are battery parameters? Explain each briefly.	6M	CO3	L1
	b)	Explain Lead- acid battery batteries schematic and physical structure	6M	CO3	L2
7.		OR Explain with a neat sketch the working principle of Li-ion battery used in E		CO2	10
7.			V 12M	CO3	LZ
8.		Draw and explain the block diagram of switched reluctance motor drive syste	m. 12M	CO4	L1
		OR			
9.		Explain with a neat block diagram the torque control of BLDC motor	12M	CO4	L2
4.0					
10.		Explain the working of DC-DC converter with neat diagram OR	12M	CO3	L1
11.		Explain the working of DC-AC converter with neat diagram	12M	CO3	L2
		*** End ***			

Code: 20A35AT		
III B.Tech. I Semester Regular & Supplementary Examinations December	2023	
IC Engines		
(Mechanical Engineering) Max. Marks: 70 Time: 3 I	lours	

Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two marks.		
3. Answer ALL the questions in Part-A and Part-B		
PART-A		
(Compulsory question) 1. Answer <i>all</i> the following short answer questions (5 X 2 = 10M)	со	BL
a) Mention the function of carburetor venturi. List down the different types of		
jets used in carburetor.	CO1	L1
b) What do you understand by the term knocking? How it can be eliminated?	CO2	L2
c) Write the significance of delay period in a CI engine.	CO3	L2
d) Describe the methods of finding frictional power in a multi cylinder SI and CI engine.	CO4	L2
e) Write down the mechanism of NOx formation reactions.	CO5	L1
PART-B		
Answer <i>five</i> questions by choosing one question from each unit ($5 \times 12 = 60$ Marks Marks		BL
UNIT-I	00	DL
2. Draw the schematic diagram of a typical Electronic injection		
	CO1	L2
OR		
3. Illustrate the different types of lubrication systems. Compare		
wet sump and dry sump lubrication system. 12M	CO1	L3
UNIT-II		
4. Describe the requirements of SI engine fuel. How octane		
number of an unknown fuel can be measured? Why lead is not		
C C	CO2	L2
OR		
 Explain the effect of various engine variables on SI engine knock. What are the consequences of abnormal combustion? 12M 	CO2	10
· · · · · · · · · · · · · · · · · · ·	002	LJ
6. With neat sketches explain the features of DI and IDI		

7. Explain the various factors that affect the diesel engine combustion.

12M CO3 L3

UNIT-IV

8. During the trial of a four stoke, single cylinder, oil engine the following observations were recorded: bore = 300 mm, stroke = 400 mm, speed = 200 rpm, duration of trial = 60 minutes, fuel consumption = 7.050 kg, calorific value = 14000 kJ/kg, area of indicator diagram = 322 mm², length of indicator diagram = 62 mm, spring index = 1.1 bar/mm, dead load on the brake drum = 140kg, spring balance reading = 5 kg, brake drum diameter=1600mm, total weight of cooling water=495kg, temperature rise of cooling water =38°C, temperature of exhaust gases = 300°C, air consumption = 311 kg; specific heat of exhaust gases = 1.004 kJ/kg K; specific heat of water=4.186 kJ/kg K; room temperature = 20°C. Determine (i) Brake power (ii) Indicated power (iii) Mechanical efficiency (iv) Indicated thermal efficiency 12M CO4 L4 OR 9. A six cylinder, gasoline engine operates on the four stroke cycle. The bore of each cylinder is 80 mm and the stroke is 100 mm. The clearance volume per cylinder is 70 cc. At the speed of 4100 rpm, the fuel consumption is 5.5 gm/sec and the torque developed is 160 Nm. Draw the heat balance sheet of the test engine. Assume calorific value of the fuel=44000kJ/kg. 12M CO4 L4

UNIT-V

10. Describe the mechanism of formation of CO, and UBHC emissions from I.C. engines. 12M CO5 L2

OR

11. Explain the principle of operation of a three way catalytic converter with neat sketch. 12M CO5 L3

*** End ***

На	Il Ticket Number :			
		R-2	0	
	Lech. I Semester Regular & Supplementary Examinations De	cembe	r 2023	_ }
	Industrial Management	combo	1 2020)
	(Mechanical Engineering)			
	Max. Marks: 70 Tin	ne: 3 Hou	Jrs	
Not	e: 1. Question Paper consists of two parts (Part-A and Part-B)			
	2. In Part-A, each question carries Two marks.			
	 Answer ALL the questions in Part-A and Part-B PART-A 			
	(Compulsory question)			
1. An	swer all the following short answer questions $(5 \times 2 = 10)$) M	со	BL
a)	Explain the basic concepts related to Organization.	-	1	L2
b)	Define Safety Stock and Reorder Level.		2	L1
c)	Explain the Concept of Work Study.		3	L2
d)	What do you mean by Critical Activity and Critical Path?		4	L4
e)	Define Environmental Scanning.		5	L1
_	PART-B			
A	nswer <i>five</i> questions by choosing one question from each unit (5 x 1)			וס
	UNIT-I	Marks	CO	BL
2.	Define Management? Explain Henry Fayol's 14 Principles			
۷.	of Management in brief.	12M	1	L1
	OR			
3. a)	What is an Organization? Explain its Importance.	6M	1	L3
b)	List out Different types of Organization.	6M	1	L4
-	UNIT-II			
4.	What is Plant Layout? Explain different types of Layouts			
	suitable for Batch and Process Production.	12M	2	L4
	OR			
5.	How the cost of the product can be reduced through			
	Inventory Management? The rate of use of a particular			
	raw material from stores is 20 units per year. The cost of			
	placing and receiving an order is Rs 40/ The cost of			
	each unit is Rs 100/ The cost of carrying inventory in			
	percent per year is 0.16 and it depends upon the average stock. Determine the Economic Order Quantity.			
	If the Lead time is 3 months, calculate the reorder point.	12M	2	L5
		1 - 1 1	2	LU

UNIT-III

- 6. a) What is the Role of Work Study in improving Productivity? 6M 3
 - b) State the procedural steps used in performing Method Study?6M

M 3 L4

3

L3

L4

OR

 Discuss various stages in Product Life Cycle? Why is it essential for the marketer to know about the stages in Product Life Cycle of his /her Product or Service?
 12M

1	INI.	Τ-Ιν	/

8. A project has nine activities, the expected time of each activity as follows.

S.No	Job	Duration in Days
1	1-2	6
2	1-3	8
3	2-4	7
4	3-4	12
5	4-6	3
6	5-6	5
7	3-5	7
8	5-7	11
9	6-7	10

a) Draw Project Network Diagram.

b) Find the Total Duration of the Project.

c) Identify the Critical Path.

d) Determine the Slack at each Activity. 12M 4 L5

OR

9. a) Distinguish between PERT and CPM.
b) Explain the Role of Project Crashing in Project Management.
4M 4 L2

UNIT-V

10.State different Wage Incentive Plans. Explain any two
with advantages, limitations and applications.12M5

OR

Explain the concept of Corporate Planning. Discuss the essential steps in Corporate Planning through a Flow Chart.
 12M

*** End ***

5

L4

L2

	Hall Ticket Number :			
C	ode: 20A352T	R-20		
III	B.Tech. I Semester Regular & Supplementary Examinations Dece	ember 20	23	
	Machining Processes			
М	(Mechanical Engineering) ax. Marks: 70	ime: 3 Hoi	Jrs	

No	 Dete: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two marks. 			
	3. Answer ALL the questions in Part-A and Part-B PART-A			
	(Compulsory question)			
Ansv	ver all the following short answer questions $(5 \times 2 = 10 \text{ M})$		СО	
	w the nomenclature of cutting tool geometry or cutting tool signat	ure	1	
	at is Swiss type lathe?		2	
	ntion the differences between shaper and planer.		3	
	ine lapping		4	
	te the purpose of Jigs and Fixtures		5	
,	PART-B		-	
4	Answer <i>five</i> questions by choosing one question from each unit (5 x 12 =	60 Marks)	
		Marks	CO	
_	UNIT–I			
1.	Draw a Merchants circle diagram and derive expressions t			
	show relationships among the different forces acting on th cutting tool and different parameters involved in metal cutting.			
		. 12101	1	
2 0)		6M		
2. a)	Explain ideal properties of cutting tool materials	6M	1	
b)	Discuss about tool life	6M	1	
2 0)	UNIT-II Comparison between constan and turret lethe	6M		
3. a)	Comparison between capstan and turret lathe	6M	2	
b)	Explain principle features of automatic lathe	6M	2	
	OR			
4. a)	Describe turning process on Lathe.	6M	2	
b)	Sketch and explain single spindle automate lathe	6M	2	
_ 、		~ · ·		
5. a)	Explain the working of radial drilling machine with a neat sketch	6M	3	
b)	Describe various machining applications of slotting machine	6M		

Code: 20A352T

OR 6 a) Differentiate between shaper and planer. 6M 3 L2 b) What is indexing? Explain simple indexing. 6M 3 L2 UNIT-IV 7. a) Explain Centreless griding with a neat sketch 6M 4 L2 b) Explain various types of surface finishing processes 6M 4 L2 OR What is broaching? What are its advantages? What are the 8. principle types of broaching machines? 12M 4 L1 UNIT-V Describe the designs principles of jigs and fixtures? 9. 12M 5 L2 OR What is the purpose of clamping? What factors govern the 10. choice of a clamping device to achieve the purpose of clamping? Discuss them in detail 12M 5 L2

*** End ***

ſ	Hall Ticket Number :			
L	Code: 20A351T	R-20		
	III B.Tech. I Semester Regular & Supplementary Examinations Dece Applied Thermodynamics (Mechanical Engineering)	ember 2	2023	
		īme: 3 ⊦	lours	
	Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two marks. 3. Answer ALL the questions in Part-A and Part-B PART-A			
	(Compulsory question)			
1. A	Answer all the following short answer questions $(5 \times 2 = 10 \text{ M})$		CO	BL
a) I	Name some high-pressure boilers.		CO1	L1
-	What are the differences between convergent and convergent-dive	-		L1
-	nozzle. Define the mediation of a stand degree of reaction of a stand turbing		CO2	14
	Define thermal efficiency and degree of reaction of a steam turbine		CO3	L1 L1
,	Differentiate turbojet from turboprop engine.		CO4	L1
e)	Write the properties of common refrigerants. PART-B		CO5	-
	Answer <i>five</i> questions by choosing one question from each unit (5 x 12 =	: 60 Marl	(s)	
		Marks	CO	BL
-	UNIT-I			
2.	Steam at 20 bar, 360° C is expanded in a steam turbine to			
	0.08 bar. It then enters the condenser where it is condensed			
	to saturated liquid water. The pump feeds back the water into the boiler. Assuming ideal processes, find the net work			
	done per kg of steam and Rankine cycle efficiency. Draw			
	both the T-S and h-s diagrams of cycle.	12M	CO1	14
	OR		001	
3.	Explain the working principle and operation of Babcock-			
0.	Wilcox boiler with a neat schematic diagram.	12M	CO1	12
	UNIT-II		001	LZ
4.	Dry saturated steam at a pressure of 8 bar absolute enters a			
	C-D nozzle and leaves at 1.5 bar absolute. If the flow is			
	isentropic and corresponding expansion index is 1.135, find			
	the ratio of cross-sectional area at exit and throat for			
	maximum discharge.	12M	CO2	2 L3
	OR			
5. a	a) Discuss the effect of friction on the steam quality in flow			
	through a steam nozzle.	6M	CO2	2 L2

		Code: 20A351T							
	b)	Steam expands in a convergent nozzle from 3 bar to 1 bar in a nozzle. The initial velocity is 90 m/s and the initial							
		temperature of steam is 150°C. The nozzle efficiency is 0.95. Determine the exit velocity.	6M	CO2	L3				
6.		UNIT-III What is compounding of steam turbines? Explain in detail velocity compounding of impulse turbine. What are its							
		advantages?	12M	CO3	L2				
7.		OR Steam with the velocity of 1000 m/s enters a single stage impulse turbine. The mean diameter of turbine rotor is 25 cm and it rotates with a speed of 15,000 rpm. The steam flow through the turbine is 12 kg/min. Taking the velocity coefficient of blades as 0.85, find the (i) tangential force on the blades, (ii) axial force on the blades, (iii) power developed							
		by the turbine and (iv) blade efficiency.	12M	CO3	L4				
8.		Derive expressions for thermal efficiency and work ratio of constant pressure closed cycle gas turbine. Represent the thermodynamic cycle on both p-v and T-S planes.	12M	CO4	1.2				
		OR		004	LZ				
9.		The pressure ratio of an open cycle constant pressure gas turbine plant is 6. The temperature range of the plant is 15° C and 800° C. Using the following data: $C_{pa} = 1 \text{ kJ/kg-K}, C_{pg} = 1.075 \text{ kJ/kg-K}, = 1.4 \text{ for air and gases}, CV of fuel = 43,000 \text{ kJ/kg}, c = 0.85, t = 0.90, combustion = 0.95, find$							
		 a) the thermal efficiency of the plant b) power developed by the plant if the circulation of air is 5 kg/s c) air-fuel ratio and (d) specific fuel combustion. Draw the T-S diagram representing different processes of cycle. 	12M	CO4	L4				
10.		A Bell-Coleman refrigeration cycle works between 1 bar and 6 bar. Compression follows $pv^{1.25} = C$ and expansion follows $pv^{1.3}=C$. Find COP and capacity of unit in tons of refrigeration if the air flow is 0.5 kg/s. Assume compression and expansion begin at 7°C and 37°C respectively. Neglect clearance. Draw the p-V diagram representing cycle of operation.	12M	CO5	L3				
		OR							
11.		Explain different psychrometric processes representing them on psychrometric chart.	12M	CO5	L2				

	Hall Ticket Number :]				
												R	-20		
	Code: 20A15FT	r Poqui	ar 8	Sur		mor	atan		ami	aati	one D				
	III B.Tech. I Semeste	-		-	-	ana				iuno		SCEIII		5	
						al Eng	-								
	Max. Marks: 70	·										Time	e: 3 Hou	rs	
	Note: 1. Question Pape	r consists	oft	wo r		**** (P ar		and I	Dart_	R)					
	2. In Part-A, each			-					ai t-	D)					
	3. Answer ALL	-						·t-B							
					PA	RT-A	<u> </u>								
				-		ry qu									
	Answer all the following s				ions	(5 X :	2 = 1	0M)				CO	BL	
	a) Describe in brief abo												CO1	L2	
	b) List the activities that				luceo	d disa	asters	5.					CO2	L1	
	c) Explain Disaster mar	•	•			-:!	I.a. :	م ال	-1-1-			ما اما	CO3	L2	
	 d) List out the public e approached for help 	-	-				ie in	tne	state	e, wr	NCN CO	uid be	CO4	L1	
	e) Describe the various	compone	ents o	of po	st flo	od re	ehabi	litatio	on m	easu	res?		CO5	L1	
					PA	RT-B	3								
	Answer <i>five</i> questi	ons by ch	oosii	ng or	ne qu	estio	n fro	m ea	ch u	nit (5 x 12 =	= 60 Ma		~~	
				UN	IIT–I								Marks	CO	BL
2.	Explain the cause for	Earthqua	kes?			y are	e mea	asure	ed? V	Vhich	n parts	of India			
	are more vulnerable for	or frequer	nt ea	rthqu	uake	s?							12M	CO1	L2
				(OR										
3.	Explain how the topo floods and cyclones.	ography c	of the	e site	e pla	ys a	role	in th	ne di	saste	ers cau	ised by		CO1	L2
				UN	IT–II										
4.	Describe major chemi	cal indus	trial I	naza	rds i	n Ind	ia						12M	CO2	L1
					OR										
5.	Explain type of disast yards and gas plants?	•	ectec	d in c	coal r	nines	s, cot	ton r	nills,	Oil r	efinerie	es, ship		CO2	L2
				UN	IT–III										
6.	Explain in detail about	t Methods	s of c	risis	man	ager	nent.						12M	CO3	L2
					OR										
7.	Explain the role and fu	unctions o	of a c		iter m IT–IV		ger.						12M	CO3	L2
8.	Describe structural and	d non-stru	ctura		-	n me	asur	es in	disas	ster n	nanage	ment.	12M	CO3	L1
9.	Discus the different as	spects of	disas		OR mitig	ation	throu	ugh a	advar	nced	techno	logy.	12M	CO4	L2
				UN	IT–V			•							
10.	Discuss why there is a		capa	-	OR	ng r C	Jaieg	uize	115 V		JUPON	51118.	I∠IVI	CO5	LZ
11.	Discuss the important	guiding p	orinci	-				on an	d rec	const	ruction		12M	CO5	L2
					· · · · · E	nd *'	•								