Hall Ticket Number :							1			٦	
Code: 20AE5AT								R-2	20		
III B.Tech. I S	Semester F	Reaulai	r Exam	ninatio	ons E	Dec 20:	22/Ja	n 2023			
= =	Humar	_					,				
		mmon			_						
Max. Marks: 70		.	*****	·				Time: 3	3 Hour	3	
Note: 1. Question Pape	er consists o				nd P a	rt_R)					
2. In Part-A, each		_			ia i a	II (- D)					
3. Answer ALL	_				-B						
		<u>I</u>	PART-A	<u>\</u>							
		(Compu	ılsory q	uestion	1)						
Answer all the following		er questi	ons	(5 X 2	2 = 10	OM)		С	O E	3L	
a) List the functions of									1	1	
b) Define Human Reso	ources Inforr	mation S	systems	-					1	1	
c) Define Selection.									1	1	
d) Define Career Deve	•								1	1	
e) Define Performance	Appraisal.								1	1	
۸			PART-E			• • • •	- 10	(0.34. 1	`		
Answer <i>five</i> questi	ons by choo	sing one	questio	on from	i eaci	n unit (:	5 x 12 =	= 60 Mark		00	DI
		LINI	IT–I	1					Marks	СО	BL
Discuss in detail the o	competitive (_ encina	HRM	1.			12M	1	2
		•)R	3							
Describe in detail, the	ethical asp	ects of F	IRM.						12M	1	2
		UNI	T–II								
Discuss in detail, th	•	ice of H	luman	Resou	rces	Plannin	g with	specific			
reference to the IT Inc	dustry.	_	_						12M	2	2
D'anna la datali da)R	I.I. D.	. •	1 - 11					
Discuss in detail, the Job design.	various Fa	ctors an	ecting .	Job De	sign	and the	appro	acnes to	12M	2	2
oob design.		UNI	T_III	1					12111		_
Discuss in detail, the	process and			ı ruitmer	nt.				12M	3	2
	•	C	R								
Discuss in detail, the	various barr	iers to e	ffective	selecti	on.				12M	3	2
		UNI	T–IV								
Discuss in detail the v	arious meth		_						12M	4	2
			PR								
Describe the various	impediments			barrier	for e	ffective t	raining		12M	4	2
Dogoribo in detail the	0000004 54		T–V	المعالمة	ion C	onto:			4014	r	2
Describe in detail, the	; concept of	• .	olicy in t DR	ne mal	ian C	ontext.			12M	5	2
Discuss in detail, the	importance			s to eff	active	Industr	ial Rala	ations	12M	5	2
Pioodoo in dotali, the	portance	and app	Juonio	S to Cile		muusti	iai i (Cit	A110110.	12171	J	_

*** End ***

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

	На	all Ticket Number :			
	Cod	de: 20A453T	-20		
		III B.Tech. I Semester Regular Examinations Dec 2022/Jan 2023 Microprocessors and Interfacing	3		
		(Electronics and Communication Engineering)			
	Ma		e: 3 Ho	urs	
	Note	e: 1. Question Paper consists of two parts (Part-A and Part-B)			
		2. In Part-A, each question carries Two mark.			
		3. Answer ALL the questions in Part-A and Part-B PART-A			
		(Compulsory question)			
1. A	nsw	er all the following short answer questions $(5 \times 2 = 10M)$		CO	BL
a) (Com	pare 8085 with 8086 in terms of instruction set?		1	2
b) [Diffe	erentiate near jump and far jump in 8086?		2	4
c) l	_ist t	the any two differences between RAM and ROM?		3	1
d) \	Nha	t is fully nested priority mode in 8259A?		4	1
,		e any two differences between synchronous and asynchronous	data		
t	rans	smission?		5	4
		$\frac{PART-B}{Answer five \text{ questions by choosing one question from each unit } (5 \times 12 = 60 \text{ Ma})$	rks)		
				00	D.
		UNIT-I	Marks	СО	BL
2.	a)	Describe the architecture of 8085 with neat diagram	6M	1	1
	•	Describe the addressing modes of 8086 with examples	6M	1	1
	/	OR		·	•
3.	a)	Describe the architecture of 8086 with neat block diagram	6M	1	1
	b)	Illustrate the interrupt and interrupt process in 8086 family			
	·	processors?	6M	1	2
		UNIT-II			
4.	a)	Draw internal architecture of 8257 DMA controller and explain			
		its programming features.	6M	2	2
	b)	Distinguish SRAM and DRAM Memory Cells.	6M	2	4
		OR			
5.	a)	Explain with neat diagram to interface 8257 with 8086	0.5.5		
		processor?	6M	2	6
	D)	Interface 16KX8 RAM and 16KX8 ROM to 8086. Give suitable scheme for address mapping	6M	2	^

Code: 20A353T

UNIT-III 6. a) Explain the different operational modes of 8255. 6M 3 2 b) Describe with neat diagram how DAC is interfaced with 8086 processor? 6M 3 6 OR 7. a) Write a program to interface stepper motor to 8086 microprocessor. 6M 3 4 Discuss about the control word for 8255 6M 3 2 **UNIT-IV** 8. a) Explain the architecture of 8259 with neat diagram 6M 4 2 b) Explain with neat diagrams the various modes of operation of 8253? 6M 4 2 **OR** 9. a) Draw the control word format of 8259 and explain? 6M 2 4 b) Draw the functional diagram of 8254 and explain each block? 6M 4 2 UNIT-V 10. a) Draw the control word format of 8251? 6M 5 2 b) With the help of neat diagram explain the bus structure of IEEE 488 6M 5 2 OR Draw and explain various DTE and DCE connection using 11. a) RS232C? 6M 5 2 b) With the help of neat diagram explain handshaking signals of **IEEE 488?** 6M 5 2

*** End ***

Hall Ticket Number :	R-20)	
Code: 20A45BT III B.Tech. I Semester Regular Examinations Dec 202)2/Jan 2023		
Nano Electronics	.2/JUI1 2025		
(Electronics and Communication Engineerin	ıg)		
Max. Marks: 70	Time: 3	Hours	
Note: 1. Question Paper consists of two parts (Part-A and Part-B)			
2. In Part-A, each question carries Two mark.			
3. Answer ALL the questions in Part-A and Part-B			
<u>PART-A</u> (Compulsory question)			
1. Answer all the following short answer questions (5 \times 2 =	10M) co	BL	
a) What are the likely impacts of nanotechnology?	, CO1	L1	
b) Define Quantum well.	CO2	L2	
c) List any two quantum electronic devices.	CO3	L2	
d) What is the tunneling element?	CO4	L1	
e) What is the Debye length?	CO5	L2	
PART-B			
Answer five questions by choosing one question from each unit (5	x 12 = 60 Marks)	
	Marks	СО	
UNIT-I			
Describe the following components of Scanning E	lectron		
Microscope			
a) Scan Coils b) Electron Detector	12M	CO1	
OR			
a) With schematic, describe atomic force microscopy.	6M	CO1	
b) With schematic, describe Secondary Ion	Mass		
Spectrometry.	6M	CO1	
UNIT-II			
a) With a drawing, describe the principles of nano	•		
lithography.		CO2	2
b) Illustrate the split-gate technology	6M	CO2	
OR			
	o unina		
a) Discuss the model of semiconductor hetero structure	•		
a) Discuss the model of semiconductor hetero structure a clean sketch.b) Explain the basics of lithography with a drawing.	6M	CO2	

Code: 20A45BT

UNIT-III

		UNI I -III			
6.	a)	Describe in depth the concept of Quantum cellular automata	. 61	M cc	3 2,3
	b)	Describe the quantum dot array in detail.	6M	CO3	2,3
		OR			
7.	a)	Explain the concept and operation of Electron-spin			
		transistor using the appropriate schematics.	6M	CO3	1,3
	b)	Shortly describe the short channel MOS transistor.	6M	CO3	2,3
		UNIT-IV			
8.	a)	Describe in detail the design of basic Logic gates Inverter			
		and OR gate based on RTDS.	6M	CO4	2,3
	b)	Explain the Coulomb Blockade	6M	CO4	1,2
		OR			
9.	a)	Elucidate SET Circuit Design for Memory circuits	6M	CO4	3
	b)	Illustrate the Performance of the Single-Electron			
		Transistor.	6M	CO4	2,4
		UNIT-V			
10.	a)	Describe how Reliability Acts as limiting factors of			
	ŕ	integrated circuits.	6M	CO5	2
	b)	Explain the hardware requirements of nano systems	6M	CO5	3
		OR			
11.	a)	Elucidate how Nano systems act as information			
	•	processing machines	6M	CO5	4
	b)	Explain two important limitations of Integrated electronics?	6M	CO5	2
		*** End ***			

На	all Ticket Number :	-		
Cod	de: 20A45DT	R-20		
	III B.Tech. I Semester Regular Examinations Dec 2022/Jan 202	23		
	Pulse and Digital Circuits (Electronics and Communication Engineering)			
Ма		ie: 3 H	ours	
Note	 e: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two mark. 3. Answer ALL the questions in Part-A and Part-B 			
	PART-A			
	(Compulsory question)			
Ansv	wer all the following short answer questions $(5 \times 2 = 10M)$		СО	BL
Naı	me the signals which are commonly used in pulse circuits and de	efine		
any	five of them.		1	1
) Dis	tinguish between comparators and clipping circuits?		2	2
) Brie	efly discuss about the Commutating Capacitors?		2	1
) Coi	mpare voltage and current time base generators		3	2
) Diff	erentiate between logic gates and sampling gates		3	1
_	PART-B			
Ai	nswer <i>five</i> questions by choosing one question from each unit (5 x 12 = 6	υ marκ Marks	-	BL
	UNIT-I	IVIAINS	CO	DL
, a)	Derive an expression for output of a RC differentiator circuit			
u,	when its input is exponential signal. Determine the			
	transmission error	8M	1	1
b)	Derive the gain response of a RC high pass Circuit when			
	sinusoidal signal as input.	4M	1	2
	OR			
3. a)	A 10 kHz symmetrical square wave whose peak to peak			
	amplitude is 2V is impressed upon a high pass circuit whose			
	lower 3dB frequency is 5Hz. Calculate and sketch the output			
	waveform in particular what is the peak to peak amplitude.	5M	1	3
b)	Show that how RC low pass circuit acts as an integrator UNIT-II	7M	1	1
. a)	Draw the circuit diagram for positive clamper circuit and			
	explain its principle of operation.	6M	2	1

Code: 20A45DT

	D)	circuits? How can the clipping level shifted to reference voltage? Explain?	6M	2	2
		OR			
5.	a)	Explain the working of transistor clipper.	5M	2	2
	b)	With neat circuit diagram, explain the working of an emitter coupled clipper.	7M	2	1
		UNIT-III			
6.	a)	Explain the function of Astable multivibrator with waveforms	8M	2	1
	b)	Sketch the output waveform of a Schmitt trigger circuit for sine wave input of 12V peak to peak if UTP =5V and LTP= 3V.	4M	2	2
		OR			
7.	a)	Explain the principle of operation of Bi-stable multivibrators.	8M	2	3
	b)	±12 V, RC=2k , R1=10k and R2=47k . NPN silicon			
		transistor with VCE(sat) = 0.1 V, VBE (sat) = 0.7 V and hFE (min)=30 are used.	4M	2	2
		UNIT-IV		_	_
8.	a)		6M	3	1
	b)	obtain an expression for these errors for an exponential	CM.		
		sweep circuit.	6M	3	2
0	٥)	OR Draw and clearly indicate the rectoration time and flyback			
9.	,	Draw and clearly indicate the restoration time and flyback time on the typical waveform of a time base voltage.	4M	3	3
	b)	Discuss about the linearly correction through adjusting of	8M	0	•
		driving waveform UNIT-V	OIVI	3	2
10	a)	Design and verify the truth table of two input DTL NAND			
10.	a)	gate with the circuit diagram	6M	4	6
	b)	Compare unidirectional and bidirectional sampling gates	6M	3	2
	,	OR			
11.	a)	Compare logic families in detail.	6M	3	3
	b)	Explain about four diode sampling gate.	6M	3	2
	,	*** End ***			

Hall Ticket Number :			
Code: 20A451T	R-20		
III B.Tech. I Semester Regular Examinations Dec 2022/Jan 2 VLSI Design	023		
(Electronics and Communication Engineering)			
Max. Marks: 70	ime: 3 Ho	ours	
Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two mark . 3. Answer ALL the questions in Part-A and Part-B			
PART-A (Compulsory question)			
Answer <i>all</i> the following short answer questions $(5 \times 2 = 10M)$	С	ю в	L
List the basic process for IC fabrication	C	O1 BI	_4
Define Threshold voltage in CMOS?	C	O2 BI	_1
Why NMOS technology is preferred more than PMOS technology?	C	O3 BI	_1
What is Stick Diagram?	C	O4 BI	_1
What are the two types of Layout design rules?	C	O5 BI	_1
PART-B Answer <i>five</i> questions by choosing one question from each unit ($5 \times 12 = 60$	Marks) Marks	CO	В
UNIT-I	Marks	00	
2. Explain in detail about the steps involved in CMOS IC			
fabrication process with essential diagrams.	12M	CO1	В
OR			
B. Draw the I_{ds} - V_{ds} relationship curve and discuss in detail			
about its role in the MOS design equations	12M	CO1	_
			В
UNIT-II	CN 4		
1. a) Write a short note on "2µm, CMOS design rules".		CO2	В
4. a) Write a short note on "2μm, CMOS design rules".b) Draw the circuit diagrams and the corresponding stick			В
 a) Write a short note on "2µm, CMOS design rules". b) Draw the circuit diagrams and the corresponding stick diagrams for nMOS and CMOS inverters 		CO2	В

Code: 20A451T

UNIT-III

		ONI I -III			
6.	a)	Discuss about the inverter delay	4M	CO3	BI4
	b)	Derive an expression for sheet resistance (Rs) and apply the concept for calculation of sheet resistance for CMOS inverter	8M	CO3	BI1
		OR			
7.	a)	What are the alternate gate circuits are available? Explain briefly with suitable sketch	6M	CO3	Bl2
	b)	With a detailed step by step processing and draw the AND-OR-INVERT form complex processing in CMOS logic	CN4		
		circuit for the output equation Y = The state of the output equation Y	6M	CO3	BI5
_		UNIT-IV			
8.	a)	Describe the nature of a parity generator and explain its	014		
		structured design approach.	6M	CO4	BI2
	b)	Explain in detail about design flow of FPGA.	6M	CO4	BI2
		OR			
9.	a)	Give the subsystem design considerations of a four-bit adder	6M	CO4	BL4
	b)	Explain step-by-step subsystem design approach. Consider an example.	6M	CO4	Bl2
		UNIT-V			
10.	a)	Explain the concept of design verification and design			
		capture tools used in VHDL synthesis.	9M	CO5	BI2
	b)	Write a short note on Built in self-test	3M	CO5	BI1
		OR			
11.	a)	What is the need of testability? Explain design for testability.	6M	CO5	BI1
	b)	Describe briefly about chip level test techniques *** End ***	6M	CO5	BI5

Hall Ticket Number :

R-20

Code: 20A452T

III B.Tech. I Semester Regular Examinations Dec 2022/Jan 2023

Control Systems

(Electronics and Communication Engineering)

Max. Marks: 70 Time: 3 Hours

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

- 2. In Part-A, each question carries Two mark.
- 3. Answer ALL the questions in Part-A and Part-B

PART-A

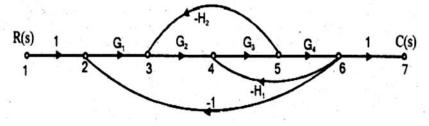
(Compulsory question)

- 1. Answer **all** the following short answer questions $(5 \times 2 = 10 \text{M})$ CO BL
- a) What are the limitations of transfer function approach? CO1 L3
- b) The damping ratio of the system is 0.75 and the natural frequency of oscillation is 12 rad/sec. Determine the overshoot and peak time.

 CO2 L3
- c) How closed loop frequency response is determined from open loop frequency response using M and N circles?

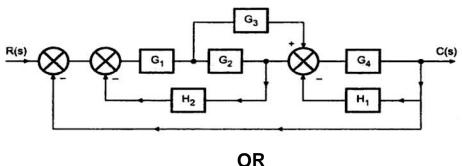
 CO3 L3
- d) What is compensation? What are the different types of compensators? CO4 L3
- e) Write the general form the state transition matrix

CO5 L1


PART-B

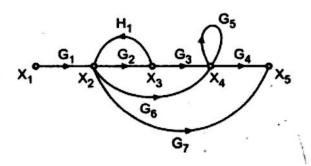
Answer five questions by choosing one question from each unit ($5 \times 12 = 60$ Marks)

Marks CO BL


UNIT-I

2. a) Find the overall gain C(s)/R(s) for the signal flow graph shown in fig.

6M CO₂ L₃


b) Reduce the block diagram to its canonical(simple) form and hence obtain the equivalent transfer function C(s)/R(s).

6M CO3 L3

Code: 20A452T

3. a) For the signal flow graph shown ion following fig .determine x_5/x_1 . Use Mason's gain formula.

8M CO₂ L₃

b) Write the block diagram reduction techniques.

4M L1

UNIT-II

4. A second order system is given by $\frac{C(s)}{R(s)} = \frac{25}{s^2 + 6s + 25}$.

Find its rise time, peak time, peak overshoot and settling time if subjected to unit step input. Also calculate expression for its output response.

12M CO₂ L₃

OR

5. a) Discuss about steady state error constants.

6M CO2 L2

b) Open loop T.F of unity feedback system is $G(s) = \frac{K}{(1+Ts)s}$ where K and T are constants. Determine factor

by which gain "K" should be multiplied so that overshoot of unit step response be reduced from 75% to 25%.

6M CO2 L3

UNIT-III

6. a) Construct the Routh array and determine the stability of the system represented by the characteristic equation $s^5 + s^4 + 2s^3 + 2s^2 + 3s + 5 = 0$. Comment on the location of the roots of characteristic equation.

6M co₃ L₃

b) By means of RH criterion determine the stability of the system represented by the characteristic equation $S^4+2S^3+8S^2+4S+3=0$

6M co₃ L₃

OR

7. Sketch the root locus plot of the system whose open loop

$$G(s)H(s) = \frac{K}{s(s+4)(s^2+4s+13)}$$
.

transfer function is given by

12M CO₃ L₄

Code: 20A452T

UNIT-IV

8. a) What are the different types of compensators available? Explain briefly.

4M CO4 L3

b) Sketch the Bode plot for the system with the transfer function

$$G(s)H(s) = \frac{10}{s(1+0.5s)(1+0.1s)}$$

8M CO4 L3

OR

9. The open-loop transfer function of unity feedback system is given by $G(s) = \frac{1}{s^2(1+s)(1+2s)}$. Sketch the polar plot and

determine the gain margin and phase margin.

12M co4 L4

UNIT-V

10. For the given system X = Ax + Bu where

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 3 \\ 1 & 1 & 1 \end{bmatrix}; B = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

Find the characteristic equation of the system and its roots

12M CO₂ L₃

OR

11. Find the controllability and observability for the following system model.

$$X(t) = \begin{bmatrix} 0 & 1 \\ -6 & -2 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + u(t) \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$Y(t) = \begin{bmatrix} 3 & 0 \end{bmatrix} X(t)$$

12M CO3 L3

*** End ***

Hall Ticket Number :			
	R-20)	
Code: 19A454T (SS) III B.Tech. I Semester Regular Examinations Dec 2022/Jan 2 Digital Communications	023		1
(Electronics and Communication Engineering)			
Max. Marks: 70 ********	ime: 3 I	Hours	5
Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two mark. 3. Answer ALL the questions in Part-A and Part-B PART-A			
(Compulsory question)			
1. Answer <i>all</i> the following short answer questions (5 X 2 = 10M))	СО	BL
a) What is Quantization noise?	•	1	L1
b) Define Adaptive dcpm.		2	L2
c) Write the equation of Shannon Heartly.		3	L1
d) Write the properties of cyclic codes		4	L1
e) Define code rate in convolutional encoder.		5	L1
PART-B			
Answer <i>five</i> questions by choosing one question from each unit (5 x 12 =		-	DI
UNIT-I	Marks	СО	BL
1. a) Write in detail about the drawbacks of Delta modulation	6M	1	L2
b) Describe the Bandwidth requirements of PCM	6M	1	L2 L2
OR	Olvi	'	LZ
2 a) Explain the need of Adaptive Delta modulation with neat			
sketch	6M	1	L3
b) Describe in detail about Differential PCM	6M	1	L1
UNIT-II			
3. a) Explain in detail about the Non-Coherent detection of FSK	6M	2	L1
b) Describe about the generation of Phase shift Keying with			
neat diagram	6M	2	L2
OR			
4. a) Explain in detail about M-ary signaling	6M	2	L2
b) Describe the BASK modulation technique with the help of			
a neat diagram.	6M	2	L2
UNIT-III			
5 Define the following i)Information ii) Entropy iii) Rate of	12M	^	
Information iv) Channel Capacity		3 1 of 2	

Code: 19A454T (SS)

OR

6.	State and prove the properties of Mutual Information	12M	3	L1
	UNIT-IV			
7 a)	Describe about matrix description of Linear Block Codes	6M	4	L2
b)	Describe about Error detection and correction capabilities			
	of Linear block codes	6M	4	L2
	OR			
8.	A DMS transmitting five symbols X 1 , X 2 , X 3 , X 4 , and			
	X5 with Probabilities 0.4, 0.1, 0.2, 0.1, 0.2. Then find			
	efficiency and Variance			
	i) By Placing the Combined symbol as high as possible			
	ii) By Placing the Combined symbol as low as possible	12M	4	L3
	UNIT-V			
9 a)	Describe the Algebraic Structure of Cyclic codes	6M	5	L1
b)	Explain the Syndrome circuit for Cyclic codes	6M	5	L1
	OR			
10.	For a (2,1,3) Convolution encoder if $g_1=[1\ 1\ 0]$ $g_2=[1\ 0\ 1]$			
	then draw the TREE diagram	12M	5	L2
	*** End ***			