## Hall Ticket Number :

Code: 1G655
III B.Tech. I Semester Supplementary Examinations May 2018

## Design and Drawing of Reinforced Concrete Structures

( Civil Engineering )
Max. Marks: 70
Time: 3 Hours

## PART-A <br> Answer any one question ( $1 \times 28=28$ Marks )

1. Design a T-Beam section with a flange width of 1250 mm , flange depth of 100 mm , a web width of 250 mm and an effective depth of 500 mm , which is subjected to a factored moment of 560 kNm . The concrete mix to be used is of M20 and steel is of grade Fe415
a. Draw the reinforcement details in cross section
b. Draw the reinforcement details in longitudinal direction

## OR

2. Design a interior panel two way R.C. Slab for a room 4 m wide and 4 m long. The slab is supported on R.C.C Beams. The width of beam is kept as 230 mm . The superimposed load is $3.2 \mathrm{kN} / \mathrm{m}^{2}$ and finishing load expected is $1.8 \mathrm{kN} / \mathrm{m}^{2}$
Use M 20 concrete and Fe 415 steel.
(a) Draw the reinforcement of the slab in plan view.
(b) Draw cross section of the slab including beams with reinforcement details.

## PART-B

## Answer any Three questions ( $\mathbf{3 \times 1 4 = 4 2 \text { Marks ) }}$

3. A rectangular simply supported beam 300 mm wide and 400 mm deep upto the center of reinforcement, has to resist a load of $20 \mathrm{kN} / \mathrm{m}$ and having effective span of 6 m . Design the section. Use M20 grade concrete and Fe 415 steel.
4. Design a simply supported RC beam for shear subjecting load a UDL of $30 \mathrm{kn} / \mathrm{m}$ and having span of 4 m . width of the beam is 230 mm and depth of the beam is 450 mm .
5. Design a simply supported one way slab with dimensions $3 x 7 \mathrm{~m}$. Width of the supports on four edges are 230 mm . Live load on the slab is $4 \mathrm{kn} / \mathrm{m} 2$ and dead load including self-weight is $3.5 \mathrm{kN} / \mathrm{m}^{2}$. Use M20 grade concrete and Fe415 steel.
6. Design a column of size $300 \times 450 \mathrm{~mm}$ subject to a axial load of 800 kN moments are $M x=50 \mathrm{knM}$ and $M y=60 \mathrm{kNm}$ at top and bottom of the column. Effective length of the column is 3 m .
7. Explain in detail about limit state of serviceability with codal provisions.

Hall Ticket Number :
R-11 / R-13

## Code: 1G653

# III B.Tech. I Semester Supplementary Examinations May 2018 Engineering Hydrology-I 

( Civil Engineering )
Max. Marks: 70
Time: 3 Hours
Answer any Five questions
All Questions carry equal marks (14 Marks each)

1. a) Describe various methods of computing average rainfall over a basin 7M
b) What do you understand by precipitation? Explain various types of precipitation.
2. a) Explain briefly infiltration capacity, ø-index and w-index. 7M
b) What are the factors affecting Evaporation? 7M
3. How do you separate base flow from direct runoff? 14M
4. a) What are the limitations of applications of Unit hydrograph? 7M
b) Explain about rational method. 7M
5. a) What are the assumptions and limitations of dupuit's theory? 4 M
b) A tube well having a diameter of 15 cm fully penetrates a confined aquifer of thickness 10 m . The discharge from the well at a drawdown of 8 m is 80 lps . Determine the coefficient of permeability and the transmissibility of the aquifer. Take the radius of influence as 300 m .
6. a) Describe quality of Irrigation water and also Standards for irrigation water. 7M
b) Describe briefly the various soil groups of India. 7 M
7. What is consumptive use of water? Describe any two methods for determining the consumptive use of water.
8. a) Design the irrigation canal to carry a discharge of 1.4 cumec. Assume $\mathrm{N}=0.0225, \mathrm{~m}=1$ and $\mathrm{B} / \mathrm{D}=5.7$
b) What are the drawbacks of kennedy's theory? 4 M

Hall Ticket Number : $\square$

## Code: 1G651

## R-11/R-13

III B.Tech. I Semester Supplementary Examinations May 2018 Structural Analysis II
( Civil Engineering )
Max. Marks: 70
Time: 3 Hours

Answer any Five questions<br>All Questions carry equal marks (14 Marks each)

1. a) A three hinged parabolic arch of span 20 m and a central rise of 4 m carries two point loads of 20 KN and 30 KN at 5 m and 15 m from the left hinge A respectively. Determine the reactions at the support hinges and BM under the load points.
b) Also find the normal thrust and radial shear at 4 m from A. Draw the BM diagram,
2. A two hinged parabolic arch has a span of 30 m and a central rise of 5 m . Calculate the maximum positive and negative bending moment at a section 10 m from the left support, due to a single point load of 12 KN acting at 8 m from left support A . The second moment of the area varies as the secant of the slope of the rib.
3. a) Determine the support moments and sketch the BMD for the portal frame ABCD with both supports $A$ \& $D$ fixed. Length $A B=C D=4 m$ and beam $B C=6 m$. $I_{A B}=I_{C D}=I$ and $I_{B C}=2 I$. Beam BC carries udl of $10 \mathrm{KN} / \mathrm{m}$ over its entire span in addition to a point load of 15 KN at 2.5 m from B. Use Slope - Deflection method.
b) Sketch the bending moment diagram.
4. Using moment distribution method, calculate the final moments for a portal frame $A B C D$ whose ends $A \& D$ are hinged. Spans $A B=3 m, B C=4 m$ and $C D=5 m$. Span $B C$ carries a udl of $8 \mathrm{KN} / \mathrm{m}$ over the entire span. Sketch the BMD for the above frame.
5. Analyze the continuous beam $A B C D$ using Kani's method. Span $A B=5 \mathrm{~m}$ and span $B C=4 \mathrm{~m}$ and span $C D=6 \mathrm{~m}$. $A B$ carries a point load of 8 KN and $B C$ carries a udl of $4 \mathrm{KN} / \mathrm{m}$ and CD carries an eccentric point load of 12 KN at 2.5 m from C. Sketch the bending moment diagram.
6. A two span continuous beam $A B C$ is fixed at $A \& C$ and rests on a simple support at $B$ which sinks by 5 mm . The span $A B=4 \mathrm{~m}$ and $B C=6 \mathrm{~m}$. Span $A B$ carries a uniformly varying load from 0 at $A$ to $14 \mathrm{KN} / \mathrm{m}$ at $B$ and span $B C$ carries a point load of 40 KN at the centre. Take $\mathrm{El}=6000 \mathrm{KN} \mathrm{m}{ }^{2}$. Analyse the beam using stiffness method. Sketch the BM diagram.
7. $A$ continuous beam $A B C, 10 \mathrm{~m}$ long is fixed at $A \& C$. The length of span $A B$ is 6 m and it is loaded with an eccentric point load of 15 KN at 2 m from $A$. Span $B C=4 \mathrm{~m}$ and carries a udl of $10 \mathrm{KN} / \mathrm{m}$. Considering El as constant, analyze the beam using by flexibility matrix method. Draw the bending moment diagram.
8. a) Define plastic moment.
b) Derive the moment curvature relationship in plastic analysis.
c) Explain briefly the lower and upper bound theorems.
d) Derive the shape factor for a rectangular section.
