Hall Ticket Number :

R-13

Code: 1G651

III B.Tech. I Semester Supplementary Examinations August 2021

Structural Analysis-II

(Civil Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five questions
All Questions carry equal marks ($\mathbf{1 4}$ Marks each)
$* * * * * * * * *$

1. a) Determine the Horizontal Thrust for Three hinged arch which is subjected to effect of temperature.
b) Derive the expression for Three Hinged Circular arch.
2. a) Summarize the effect of rib shortening on two hinged circular arch?
b) Explain tied arches and fixed arches?
3. $\quad A$ single bay single storey portal frame $A B C D$ is fixed at A and D. The height of the column $A B$ is 4 m and that of $D C$ is 6 m . The span of the beam BC is 8 m . A uniformly distributed load of $70 \mathrm{kN} / \mathrm{m}$ is acting on the whole span $\mathrm{BC} . \mathrm{AB}=\mathrm{DC}=\mathrm{El}$ and $\mathrm{BC}=2 \mathrm{El}$. Calculate the support reactions and also draw the bending moment diagram for the portal frame. Use slope deflection method.
4. Analyse the beam shown in the Fig. 1 by moment distribution method. Take I $=100 \times 10^{6} \mathrm{~mm}^{4}$.

Fig. 1
5. Detail the methodology of analysis by substitute frame method?
6. A two span continuous beam $A B C$ rests on simple supports at A, B and C. All the three supports are at same level. The span $A B=7 \mathrm{~m}$ and span $B C=5 \mathrm{~m}$. The span $A B$ carries a uniformly distributed load of $30 \mathrm{kN} / \mathrm{m}$ and span BC carries a central point load of 30 kN . El is constant for the whole beam. Find the moments and reactions at all the support using flexibility method.
7. A two span continuous beam $A B C$ is fixed at A and C and rests on simple support at B. All the three supports are at same level. The span $A B=4 m$ and span $B C=6 m$. The span $A B$ carries a uniformly distributed load of $40 \mathrm{kN} / \mathrm{m}$ and span BC carries a central point load of 80 kN . El is constant for the whole beam. Find the moments and reactions at all the support using stiffness method.
8. a) Define Shape factor?
b) Develop the Shape factor for a Triangular section.

