Hall Ticket Number :

Code: 1G457

III B.Tech. I Semester Supplementary Examinations November 2019
Computer System Architecture
(Electronics and Communication Engineering)
Max. Marks: 70
Answer any five questions
All Questions carry equal marks (14 Marks each)

1. a) Describe with neat sketch the functional units of computers. 8M
b) Explain in brief complements in data representation. 6M
2. a) What is the need of three state buffers? Explain 7M
b) Draw and describe flow chart for interrupt cycle. 7M
3. List and explain addressing modes. 14M
4. a) Explain control memory with block diagram. 7M
b) Draw the block diagram for selection of address for control memory. 7M
5. With an example explain step-by-step procedure for division of two fixed-point binary numbers. 14M
6. a) With neat sketch describe memory connection to CPU 7M
b) How address mapping using pages in virtual memory? 7M
7. a) Discus about Direct Memory Access. 7M
b) Draw block diagram of a computer with I/O Processor. Describe. 7M
8. a) Describe Crossbar switch interconnection structure. 7M
b) Briefly explain the parallel processing. 7M

Code: 1G353

III B.Tech. I Semester Supplementary Examinations November 2019

Digital IC Applications

(Electronics and Communication Engineering)
Max. Marks: $70 \quad$ Answer any five questions
All Questions carry equal marks (14 Marks each)

1. a) Design a CMOS transistor circuit for a Two input XOR gate and explain the operation with the help of function table?
b) Explain about CMOS steady electrical behavior in brief.
2. a) Distinguish CMOS logic and TTL logic circuits. 6M
b) With the help of diagram explain the working of three input ECL-NOR gate. 8M
3. a) Describe the design flow of HDL with an example. 8 M
b) Describe the program structure in VHDL. 6M
4. a) Distinguish concurrent and sequential signal assignment statements with an
example
b) Describe conditional and switch statements used in VHDL with an example. 7M
5. a) Write a VHDL program for 4-bit grey to binary. 6M
b) Write a VHDL program for 3-8 decoder using case statement. 8M
6. a) Design 4-bit Barrel shifter and write a VHDL program for it. 8M
b) What is the purpose of Wait-statement in VHDL? 6M
7. a) Design Mod-7 counter using VHDL. 8M
b) Describe the importance of sensitivity list in a process statement. 6M
8. a) Distinguish Static and Dynamic RAM 6M
b) Describe the READ and WRITE operations of Dynamic RAM cell. 8M

Hall Ticket Number :

Code: 1G352

III B.Tech. I Semester Supplementary Examinations November 2019 Linear IC Applications

(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours

Answer any five questions
 All Questions carry equal marks (14 Marks each)
 $* * * * * * * * *$

1. a) Explain the need for current mirror circuit with the help of circuit diagram. 7M
b) Discuss the DC analysis of Dual input balanced output configuration of a
differential amplifier.
2. a) Explain the block diagram representation of a typical Op-Amp. 5 M
b) Discuss the DC characteristics of an Op-Amp in detail. 9M
3. a) Draw and explain a differential amplifier with two Op-Amps. 7M
b) Draw and explain the Op-Amp ideal integrator. Mention its drawbacks. How
these are overcome with Lossy integrator?
4. a) What is the difference between a normal diode rectifier and a precision rectifier?
Explain with neat diagrams.
b) Design an Op-Amp Monostable multi for an output pulse duration of 1 ms . 7M
5. a) Design an Active Notch filter to reject a frequency of 50 Hz . 8M
b) What are the advantages and disadvantages of active filters over passive filters?
Explain.
6. a) Draw and explain the monostable operation of 555 timer. 7M
b) Draw the block diagram of 565 PLL and explain its principle of operation. 7 M
7. a) Explain the working principle of successive approximation ADC with a neat
diagram.
b) Explain the various DAC/ADC specifications in detail. 7M
8. a) Draw and explain a sample and hold circuit. 7M
b) Discuss the applications of analog switches. 7 M
