	Н	all Ticket Number :			
	Ca	de: 4G254	R-14		
	CO	III B.Tech. I Semester Supplementary Examinations August 2	2021	1	
		Electrical and Electronics Measurements			
		(Electrical and Electronics Engineering)			
	Мс	ax. Marks: 70	ime: 3 H		
		Answer all five units by choosing one question from each unit (5 x 14 = 7 ********	0 Marks)		
			Marks	со	Blooms Level
		UNIT–I			
1.	a)	Discuss the operation of PMMC instrument with neat sketch	10M		2
	b)	A 50A, 230V, meter on full load makes 61 revolutions in 37 seconds. If the			
		normal disc speed is 500 revolution per Kwh find the % error.	4M	1	3
2.	2)	OR Explain the working of a making iron type instruments. Derive the expression			
Ζ.	a)	Explain the working of a moving iron type instruments. Derive the expression for Torque produced.	10M	1	2
	b)	Define the following torques.			_
	- /	i) Deflection Torque ii)Control Torque iii)Damping Torque	4M	1	2
		UNIT-II			
3.	a)	Discuss the working principle of Dynamometer type wattmeter with its constructiona			
		diagram and derive the expressions.	10M	2	2
	b)	List out the methods used for wattmeter calibration	4M	2	2
4.		OR Discuss the working principle of Induction type energy meter with neat sketch			
4.		and draw the phasor diagram.	14M	2	2
5.	a)	Describe the Construction diagram and operation of AC potentiometer	10M	3	2
	b)	Distinguish between AC and DC Potentiometers.	4M	3	1
		OR			
6.		Explain the construction and working of Weston type frequency meter along			0
		with a neat diagram.	14M	3	2
7	c)	UNIT-IV			
7.	a)	Kelvin double bridge is balanced with the following constants: outer ratio arm 1000hm & 1000 ohm ; inner ratio arms, 99.920hm and 1000.60hm; resistance			
		of link 0.1 ohm, standard resistance 0.00377 ohm. Calculate the value of			
		unknown resistance.	10M	4	3
	b)	List out the methods used for low resistance measurement.	4M	4	1
•	、	OR			
8.	a)	Draw the Anderson bridge and derive the expression for balancing the bridge	10M	4	3
	b)	Define the following i)Quality Factor ii)Dissipation factor	4M	4	1
	0)			1	
9.		Discuss about			
5.		i) Digital frequency meter ii) Digital multimeter iii) Digital Tachometer.	14M	5	2
		OR			
10.	a)	Discuss the construction and working of Digital Storage Oscilloscope along		_	_
		with a neat sketch	14M	5	2

			_		i		1						l				
	ŀ	Hall Ticket Number :													R-14		
	С	ode: 4G253													N-14		
		III B.Tech. I	Ser	nest					-		ninc	ation	s Aug	ust 2	021		
									ctror								
		Maria Marilan 70	(Elec	trico	ıl an	d Ele	ectro	onics	s Eng	jine	ering)	т:			
		Max. Marks: 70 Answer any five full a	זסוור	tions	by c	hoo	sina	one		tion	from		h unit l		me: $3 +$		
			1003	110113	by c		-	*****	-			reac		0/14	70101		
															Marks	со	Blooms Level
						UN	IT–I										2010.
1.	a)	Explain the various tu	irn-or	n met	hods	of S	CRs.								7M	CO1	L2
	b)	How do you known tu	ırn O	N and	d turr	n OFF	= tim	es fro	om th	e swi	tchir	ng cha	aracteris	stics?			
		Explain.													7M	CO2	L4
_				_		-	DR							_			
2.	a)	What are the probler								el co	nneo	cted S	SCRs?	Draw	714	004	10
	հ)	and explain circuit for							1:-:				7M	CO1	L2		
	b)	Draw and explain the connected SCRs?	e nec	essi	yors	static	and	ayna	amic	equa	ΠΖΙΝ	g circ	ult for s	series	7M	CO1	L2
						LINI	IT–II								7 101	001	
3.	a)	Explain the two-transi	istor	analo	av of										7M	CO2	L2
0.	b)	Explain over voltage			••			1 Met	al Ox	ide V	arist	ors			7M	CO2	L2 L2
	0)		01010	00011			DR	, 10100			unot	010.			7 101	002	LZ
4.	a)	What is the need for	a re	sistor	in s	eries	with	capa	acitor	in s	nubb	er cir	cuit of	SCR.			
		Explain with neat circ	uit di	agran	∩?										7M	CO2	L2
	b)	The specifications of	-		•	-		•		•			•				
		peak current=250A, (-					-				-			
		for the three specifi minimum load resista			entic	nea	abo	ve. L	Jesig	n a	snut	ber (circuit	it the	714	CO6	L3
				3 20	· _		T–III								7 101	000	LJ
5	a)	What is the effect of	sour	ce inc	lucta				base	full v	Nave	e cont	rolled b	ridae			
•	<i>.</i> ,	rectifier with RL load?						• ·							7M	CO3	L2
	b)	Explain the working of	of thr	ee pl	nase	sem	i cor	verte	er wit	h rele	evan	t wav	e forms	s with			
		highly inductive load f	for fir	ing a	ngle o	of 30	⁰ .								7M	CO3	L2
_						-)R										
6.	a)	What is phase angle				•		•		•			• .				
		phase angle control voltage with relevant				enve	eine	ext	ressi	on io	Jra	verag	e ac c	utput	14M	CO3	L2
		voltage with follovalit	wave		<i>.</i>		T–IV	,							1 1101	005	
7.	a)	Explain with neat circ	uit di	aaran	n and				ne wo	rkina	of cl	ass A	chopp	er.	7M	CO4	L2
	b)	A class-A chopper of		•						•						001	
	2)	10 micro farads and															
		remain in ON state.	Wh	at wi	ll be	the	turn	N ON	time	e if t	he le	oad r	esistan	ce is			
		decreased to 25 ohm	s?												7M	CO6	L3
0		Evalois the energin	~ ~ ~	ا من م	f	-)R		م مادن		abla	مانم					
8.	a)	Explain the operation expressions for avera										alag	ram. L	enve	7M	CO4	L2
	b)	Explain how thyristor	•	•		•			•	-		are di	sadvan	tanes	7 101	004	LZ
	0)	of this commutation c			naici		1033		ιορρε	/1. //			Sauvan	lages	7M	CO4	L2
						UN	IT–V										
9.	a)	What are pulse width	mod	ulated	d inve				re the	e diffe	erent	PWM	1 techni	ques			
		used in inverter?													7M	CO5	L2
	b)	Draw the single phase	e bid	irectio	onal a	ac vo	ltage	e con	trolle	r with	<i>R</i> lo	ad ar	nd expla	ain its			
		working principle with	wav	eform	IS.										7M	CO5	L2
	,				<i>.</i>	-	DR .			D 1 1		_					
10.	a)	Explain the working o		•	e full	brid	ge In	verte	er with	I RL I	oad.	Draw	the		714	005	12
	b)	relevant output wavef A 50 Hz single phase			nror	1000		auar			tann	20101	e lood	whon	7M	CO5	L2
	b)	operating from a 300		•	•			•			•						
		series with inductance		-													
		lowest order harmonie	cs in	the A	C loa	ad cu	irrent	t.							7M	CO6	L3
								****	:								

	Н	all Ticket Number :			
		de: 4G252	R-14		
	CO	III B.Tech. I Semester Supplementary Examinations August 20	21		
		Transmission of Electric Power (Electrical and Electronics Engineering)			
	-	x. Marks: 70 Tin	ne: 3 H		
	Ans	swer any five full questions by choosing one question from each unit (5x14 = *********	: 70 Ma	arks)	
			Marks	со	Blooms
		UNIT-I			Level
1.	a)	Derive the expression for capacitance of a single phase overhead line.	7M		BL3
	b)	Find out the capacitance of single phase line of 30km long consisting of two			
	,	parallel wires each 15mm diameter and 1.5m apart.	7M	CO1	BL3
		OR			
2.		Derive the capacitance calculations for symmetrical and asymmetrical single			
		transmission lines from fundamentals.	14M	CO1	BL3
3.		UNIT-II			
з.		A 3 phase 100km line has the following constants. Resistance/phase/km =0.153 ohm, inductance/phase /km=1.21mH, Capacitance/phase /km= 0.00958µF. If the			
		line supplies a load of 20MW at 0.9 pf lagging at 110kV at the receiving end			
		calculate sending end current, sending end power factor, regulation and			
		transmission efficiency using nominal T method.	14M	CO2	BL3
4.		OR Draw the nominal T circuit of a medium length transmission line and derive			
4.		expression for sending end voltage and current. Also draw the respective phasor			
		diagram.	14M	CO2	BL3
		UNIT–III			
5.		Using rigorous method, derive expression for sending end voltage and current for			
		a long transmission line.	1410	CO3	BL3
6.		OR Explain the concepts of Skin, Proximity and Ferranti effects in detail with			
0.		illustrations.	14M	CO3	BL2
		UNIT–IV			
7.	a)	Prove that a transmission line conductor between two supports at equal heights			
		takes the form of a catenary.	7M		BL3
	b)	What is sag template? Explain how this is useful for location of towers and stringing of power conductors.	714	CO4	BL2
		OR	7 111	004	DLZ
8.		Derive an expression for sag of a line supported between two supports of the			
01		same height. Also Explain the effect of ice and wind loading.	14M	CO4	BL3
		UNIT-V			
9.	a)	Describe the general construction of an underground cable with a neat sketch.	7M		BL2
	b)	A single core cable used on 33kV, 50Hz has conductor diameter 10mm and inner			
		diameter of sheath 25mm. The relative permittivity of insulating material used is 3.5. Find (1) Capacitance of the cable per km (2) Maximum and minimum			
		electrostatic stress in the cable (3) Charging current per km.	7M	CO5	BL3
		OR			
10.	a)	Explain any four insulating materials used in manufacturing cable.	7M		BL2
	b)	Find the economic size of a single core cable working on a 132kV three phase			
		system, if a dielectric stress of 60KV/cm can be allowed.	7M	CO5	BL2
