	1 IGI	I Ticket Nu								R-14					
,	Coc	le: 4G251								N-14					
		III B.Te	ch. I Ser	mester S	Supplem	ientary E	xamina	tions Oc	tober 20)20					
		Electrical Machines-III													
		(Electrical and Electronics Engineering)													
	Mc	ax. Marks:								e: 3 Hours					
		Answer al	five units	s by choc	-	question f	rom each	n unit (5 x	14 = 70 N	Aarks)					
						IT–I									
		Distinguish	the follow	wing (i) in			onal clot y	vindinge (ii) cinalo c	nd doublo					
	a)	layer windi		• • •	•			windings (ii) siriyie a						
	b)	A 3-phase	• • •	•	•		ernator h	as 72 el	ots Fach	slot hae					
	0)	•	•	•	•					th factor. If					
		flux per po		•	-	•	-								
						OR									
	a)	a) Write causes of Harmonics and suppression of harmonics in alternators													
	b)	b) A 50Hz, 600 rpm, salient pole synchronous generator has a sinusoidal flux density having a													
		maximum value of 1 tesla. The generator has 180 slots wound with 2 layer 3 turn coils. The													
		coils. The coil span is 15 slots and phase spread is 60 degrees. The armature diameter is													
		1.25m and core length 0.45m. Find													
		 i) peak value of emf per conductor ii) peak value of emf per coil iii) rms phase and line voltage, if the machine is star connected. 													
		III) rms pha	ise and lin	e voltage,			r connecte	ed.							
		_				IT–II									
	a)	Describe a	method t	o determir	ne direct a	xis and qua	adrature a	xis reactar	nces of a s	alient pole					
		alternator.			. .										
	b)	A 100 kV			•										
		an open ci				•				200 A and					
		and 0.8 lea						onage reg		5.0 lagging					
					p	OR									
		The OC a	nd SC tes	t results f	for a 3-ph		ole 440 V	Y-connec	ted alterna	ator are as					
		The OC and SC test results for a 3-ph 50 Hz,6-pole 440 V,Y-connected alternator are as follows													
			2	4	6	7	8	10	12	14					
		f	2	_											

A field current of 7 A is needed to circulate the full load rated armature current of 40A under short circuit conditions. The field current for rated terminal voltage under full load zero power conditions is 15 A. The armature resistance is 0.2 ohms/ph. Find the regulation at full load current of 40A at 0.8 lagging pf. Using (i) mmf method (ii) potier triangle method. And also comment on the results

UNIT-III

5. Discriminate the effect of change of excitation and mechanical power input on parallel operation of alternators.

OR

6. Demonstrate the operation of synchronization of an alternator with an infinite bus A 2MVA, 3 phase, star connected, 8 pole, 750 rfpm alternator is operating on 6000V bus bars. Synchronous reactance is 6 ohms/phase. Find synchronizing power and torque per mechanical degree of displacement for full load, 0.8 pf lagging.

7M

14M

7M

Page 2 of 2

7M

7M

7M

14M

7M

UNIT–IV

- 7. a) Classify and explain different methods of starting of synchronous motor.
 - b) A 6600V, 3 phase star connected synchronous motor works at constant voltage and constant excitation. Its synchronous impedance is (2+j20) ohm/phase. When the input is 1000KW, the pf is 0.8 leading. Find the pf when the input is increased to 1500KW.
 7M

OR

- 8. a) Compare how the armature current and power factor varies with the field current of synchronous motor.
 - b) A 2300V, 3 phase star connected synchronous motor has a synchronous reactance of 10ohms/phase. When the motor delivers 255hp the efficiency is 90% (exclusive of field loss). The power angle is 20°. Calculate (a) E per phase (b) current and (c) power factor. Neglect resistance.

UNIT–V

9. Show that a single phase winding when excited by a single phase supply produce two equal and opposite revolving fields.

OR

- 10. a) Briefly discuss any two different methods used for starting of one phase induction motor with neat diagram.
 - b) Draw a diagram showing the construction of a stepper motor and discuss its operation briefly.
 7M

	Cod	de: 4G359	
		III B.Tech. I Semester Supplementary Examinations October 2020	
		Linear and Digital Integrated Circuits Applications	
		(Electrical and Electronics Engineering)	
	Mo	Time: 3 Hours Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)	

	-)	UNIT-I	~
1.	a)	What are the different package types and temperature ranges of IC's	6N
	b)	How the op-amp acts as V-I and I-V converter?	8N
2.	a)	List the ideal characteristics of an op-amp.	4N
۷.	b)	Draw the internal diagram of an op-amp and explain the operation of each section.	101
	D)	UNIT-II	1010
3.	a)	Draw IC 555 timer functional diagram and explain its function.	7N
5.	a) b)	Draw PLL block diagram and briefly explain the operation of each block.	7N
	D)	OR	7 1
4.	a)	Explain about basic DAC techniques.	8N
	b)	List the applications of DAC and ADC.	6N
	,	UNIT–III	
5.		Give a detailed list of CMOS, TTL & ECL logic families.	14N
		OR	
6.	a)	Construct CMOS inverter circuit and explain the different regions of operation using its	
		transfer characteristics.	7N
	b)	Draw and explain the operation of 2-input CMOS NAND gate.	7N
		UNIT–IV	
7.	a)	Explain the operation of full adder with truth tables.	6N
	b)	With an example explain the operation of IC 75X85.	8N
		OR	
8.	a)	Write a shot note on Arithmetic and Logic Unit.	7N
	b)	What do you mean by carry propagation delay?	7N
		UNIT-V	
9.	a)	Compare combinational and sequential logic circuits.	7N
	b)	Explain about race around condition and how it can be reduced?	7N
		OR	
0.		Draw and explain the operation of RS, JK, D and T flip flops with their pin diagrams and	1 / 1
		logic diagrams.	14N

R-14

Hall Ticket Number : Code: 4G253

III B.Tech. I Semester Supplementary Examinations October 2020

Power Electronics

(Electrical and Electronics Engineering)

Max. Marks: 70

Time: 3 Hours Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)

UNIT-I

a) Describe the different modes of operation of a Thyristor with the help of its static characteristics. 1. b) Explain the characteristics of BJT.

OR

- a) Explain the Voltage ratings of SCR. 2.
 - b) Discuss the operation of CLASS-D (voltage) commutation along with necessary waveforms.

UNIT-II

- Explain the working of Resistance triggering circuit for SCR with circuit diagram and 3. a) waveforms. What is its limitation?
 - b) Explain working of the over voltage protecting device Metal Oxide Varistor with circuit diagram and characteristic

OR

- a) An SCR has a maximum 'di/dt' rating of 15A/µs. It is operated from a 150 V supply. What is 4. the minimum value of load inductance that will protect the device?
 - b) Explain 'di/dt' protection of SCR with relevant circuit diagram

UNIT-III

- Describe the working of a single phase Half controlled converter with R load through the 5. a) waveforms and circuit diagram
 - b) A single phase, full controlled converter supplies an inductive load. Supply voltage is 230V, 50Hz and the firing angle is 60°. Assume that the output current is continuous, ripple free and equal to 5 A. Determine average output voltage.

OR

- a) Describe the working of a Three phase full controlled converter with RL load through the 6. waveforms and circuit diagram
 - b) Distinguish between Circulating & non-circulating current modes of Dual converter.

UNIT-IV

- a) A Class A chopper circuit is operating on Time Ratio Control (TRC) principle at a frequency 7. of 1 kHz on a 220V dc supply. If the load voltage is 180V, calculate the conducting and blocking period of Thyristor in each cycle.
 - b) Draw the circuit of a two quadrant chopper and explain its working.

OR

- a) Compare between Time Ratio Control and Current Limit Control of dc chopper with relevant 8. circuit diagram and waveforms.
 - b) A dc chopper(Class A) circuit connected to a 100V dc source supplies a resistive load of R=5 Ohm in series with an inductance of 40 mH. A freewheeling diode is connected across the load. The load current varies between the limits of 10A and 12A. Compute the time ratio of the chopper

UNIT-V

- a) Explain the operation of single phase A.C. Voltage controller with a neat circuit diagram and 9. output waveforms for R load
 - Explain the operation of single phase mid-point cycloconverter with RL loads for continuous b) conduction with relevant circuit diagram and necessary output waveforms for f₀=1/3 f_s.

OR

- a) Explain different PWM techniques in brief. 10.
 - b) Explain the operation of single phase half bridge inverter with neat diagram.

	Hall	Ticket Number :												· · · · · · · · · · · · · · · · · · ·
L	Cod	e: 4G252					<u> </u>		<u>]</u>			<u> </u>]		R-14
		III B.Tech. I S	ieme	este	r Su	pple	eme	enta	ry Ex	kam	ninat	ions	Octo	ber 2020
			. –								Pow			
	м	ax. Marks: 70	(E	lect	rical	and	d Fle	ectro	nics	Eng	inee	ring)	Time: 3 Hours
	7 • 1	Answer all five u	nits b	y ch	ioosi	ng o		uest		om	each	n unit	(5 x 1	
						ι	JNIT	-I						
1.	a)	Clearly explain what	•				•							
	b)	Calculate the indu conductors are place		•	•				•		•			s 1.8 cm diameter and m
2.	a)	What you understa line?	nd by	/ trar	nspos	sition	of lir	nes?	What	are	its eff	fects	on the	performance of the
	b)		e cor	ners										n. When the conductors and 2.5 m. Diameter of
						U	INIT-	-11						
3.	a)	Derive the express line.	ions ⁻	for th	ne AE	3CD	cons	tants	for tl	ne no	omina	al-π ci	rcuit of	a medium transmission
	b)	• •	Ω pe	er km	n and	-								The inductive reactance ulate the efficiency and
								OR						
4.		-	micro	o far	ad re	espec and	ctivel	y and lation	d deli	vers	a loa	ad of	25 MV	apacitance per phase of / at 110 KV and 0.8 p.f method
5.	a)	Explain the followir i) pin type insulator ii) strain insulator	•	ulato	ors									
	b)	•	late	the v	•			eac			•			11 % of the capacitance ency when the voltage
_								OR						
6.	a)	Describe the pheno					-					-		or conductor appoad in
	b)		n. De	term	ine tl	ne co ace f	orona	loss 0.84	per	kilom	eter o	of the	line at	er conductor spaced in 20° C and atmospheric 8.
7.	a)	Discuss the phenor refraction coefficier		on of	' wav				nd ref	racti	on. D	erive	expres	ssions for reflection and
	b)	A 200 kV, 3 μs, re	ctang	-	-		f. Fin				-	-		of 400 ohms. The line is ss the capacitance.
8.	a)	Draw equivalent c Derive expressions				•					•	nd cu	rrent s	urges on a forked line.
	b)	60ohms joined to maximum valve of	an o [.] 100	verh kV	ead trave	line Is al ed ar	with ong	a sui the c ansmi	rge ir able	npec towa	lance ards t	of 4 he ju	00 ohr nction	a surge impedance of ns. If a surge having a with the overhead line, urrent at the junction
9.	a)	Describe with a nea	at ske	etch	the c				three	core	cabl	e?		
	b)													m: diameter material of
		3.5mm thickness c the three layers, if					d acr							kimum stress in each of
10.		Explain inter sheat	h are	dina	and	cana			ading	1				
IU.			ii yia	ung	anu	Japa	onall	***	auni	1				

~		R-14	
C	oae	III B.Tech. I Semester Supplementary Examinations October 2020	
		Electrical and Electronics Measurements	
		(Electrical and Electronics Engineering)	
١	Лах	. Marks: 70 Time: 3 Hour	S
	ŀ	Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)	
۱.	a)	Describe the construction and working of PMMC Instrument.	7
	b)	The inductance of the moving iron ammeter with full scale deflection of 90 ^o at 1.5 A is	'
	0)	given by expression L=[200+40 -4 ² - ³] μ H where is the deflection in radians from	
		zero position. Estimate the angular deflection of the pointer for a current of 1.0 A.	7
		OR	
2.	a)	Discuss the Major Sources of errors in CT	7
	b)	Derive the Expression for Ratio and Phase angle errors	7
		UNIT-II	
3.		Explain the constructional details and working of a single phase electrodynamometer type of power factor meter. Prove that the special displacement of moving system is	
		equal to the phase angle of the system	14
		OR	
ł.		Draw a neat sketch of showing the construction of single phase induction type energy	
		meter & explain the theory & operation of it.	14
_	-)	UNIT-III	_
5.	a)	Draw the basic diagram of basic slide wire Potentiometer. Explain its Working	7
	b)	Explain why standardization is required in Potentiometer.	7
5.		OR Explain what do you mean by low, medium and high resistances? Suggest various	
).		suitable methods for measuring them giving justification. Explain any method to	
		measure a low resistance with accuracy?	14
		UNIT-IV	
7.	a)	Describe the construction and working of a co-ordinate type a.c. potentiometer. How is it	
		standardized? Explain how an unknown voltage can be measured with it?	10
	b)	A simple slide wire is used for measurement of current in a circuit. The voltage drop	
		across a standard resistance of 0.1 is balanced at 75 cm. Find the magnitude of the	
		current if the standard cell emf of 1.45 V is balanced at 50 cm?	4
		OR Describe the method for determination of P H surve of a meanatic metarial using	
3.	a)	Describe the method for determination of B-H curve of a magnetic material using (i) Method of Reversals and (ii) Step by Step method?	10
	b)	The constant of a given magnetic potentiometer is obtained by aid of a coil of 300 turns	10
	5)	in which a current of 0.6 A is reversed. The resulting throw of the galvanometer is 157	
		scale divisions. It is then used to measure the magnetic potential difference between two	
		points and the throw is 304 divisions. Find the magnetic potential difference?	4
		UNIT–V	
).	a)	Draw the block diagram of Oscilloscope and explain the operation of it.	7
	b)	What do you mean by Lissajous pattern? How do you measure by using CRO?	7
		OR	
).	a)	Explain the working principle of digital Tachometer with the help of neat diagram.	7
		List out the Advantages and Disadvantages of digital Instruments over Analog Instruments.	7