Code: 4G552

III B.Tech. I Semester Supplementary Examinations February 2021

Dynamics of Machinery

(Mechanical Engineering)

Max. Marks: 70
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

Marks CO | Blooms |
| :---: |
| Level |

UNIT-I

1. a) Deduce an expression for the effort required to raise a body of weight W on an inclined plane with usual notations.

7M CO1 L2,L3
b) A body on a rough horizontal surface requires a force of 240 N inclined at 25° just to pull it and 280 N just to push it at the same angle. Determine the weight of the body and the coefficient of friction.

OR

2. a) Describe with neat sketch the working principle of cone clutch.
b) A single plate clutch with both sides of the plate effective, is lined with asbestos having coefficient of friction of 0.3 . The allowable pressure on fiction lining is 0.18 MPa . The inside and outside diameters of the friction lining are 90 mm and 300 mm respectively. Assuming uniform pressure, find the safe power that can be transmitted by this clutch at 300 rpm .

UNIT-II

3. A simple band brake of drum diameter 600 mm has a band passing over it with an angle of contact of 210°. While one end of band is connected to the lever fulcrum, the other end is connected to the lever at a distance of 400 mm from fulcrum and this end is perpendicular to the lever. The brake lever is 1000 mm long. Coefficient of friction is 0.33 . Find the effort required at the end of lever to stop the rotation of the drum. The drum absorbs 15 kW at 720 rpm .

OR

4. a) With neat sketch discuss the effect of gyroscopic couple on aero-planes.
b) A ship engine is propelled by a rotor of mass 5000 kg and a radius of gyration of 0.5 m . The rotor rotates at 2100 rpm clockwise when viewed from the stern. Find the gyroscopic couple for the following conditions:
i) The ship steers at a speed of 18 kmph to the left around a curve of 90 m radius.
ii) The ship rolls with an angular velocity of $0.05 \mathrm{rad} / \mathrm{sec}$ clockwise when viewed from stern, at a particular instant.

UNIT-III

5. A single cylinder, four stroke I C engine develops 12 kW at 600 rpm . The work done by the gases during expansion stroke is 3 times the work done by the gases during compression stroke. The work done by the other two strokes is negligible. The total fluctuating of speed is limited to 3% of the mean speed. The work done during suction and expansion strokes may be assumed to be triangular in shape. Find the mass of the fly wheel taking its radius of gyration as 0.5 m
6. a) What do you understand by terms:
i) Sensitiveness
ii) Hunting and
iii) Isochronism
3M CO3
L2
B) The arms of a porter governor are each 250 mm long and pivoted on the governor axis. The mass of each ball is 5 kg and the mass of central sleeve is 30 kg . The radius of rotation of the governor balls is 150 mm when sleeve begins to rise and reaches a value of 200 mm at maximum speed. Determine the speed range of the governor.

UNIT-IV

7. A rotating shaft carries 4 masses A, B, C and D at radii 100, 125, 200 and 150 mm respectively. The planes in which these masses revolve are spaced at 600 mm apart. The masses at B, C and D are 10, 5 and 4 kg respectively. Find the required mass at A and the angular positions of 4 masses to keep the shaft in balance.

OR

8. The crank and connecting rod of a 4 cylinder in line engine running at 1800 rpm , are 50 mm and 250 mm respectively and the cylinders are placed at 150 mm apart. If the cylinders are numbered 1 to 4 in sequence from one end, then the cranks appear at intervals of 90° in the end view in the order 1 $-4-2-3$. The reciprocating masses corresponding to each cylinder are 1.5 kg . Determine: i) Unbalanced primary and secondary forces if any and

	L2, L3
11 M	CO 3
$\& L 4$	

L2. L3
14M CO4 \& L4
ii) Unbalanced primary couples with reference to central plane of engine.

14 M L2. L3

UNIT-V

9. a) A steel shaft 25 mm diameter, 1.5 m long carries a disc of mass 5 kg at its center and another mass of 2 kg at 0.5 m from left support. Find the whirling speed if $\mathrm{E}=200 \mathrm{GPa}$.
b) A cantilever shaft 50 mm diameter and 300 mm long has a disc of mass 100 kg at its free end. The Young's modulus for the shaft material is $200 \mathrm{GN} / \mathrm{m}^{2}$. Determine the frequency of longitudinal and transverse vibrations of the shaft

OR

10. a) Deduce the expressions for natural frequency of vibration of a spring mass system without considering the mass of spring and with considering mass of the spring.
$6 M \quad \operatorname{LO} \quad \mathrm{~L} 3, \mathrm{~L} 4$

$8 \mathrm{M} \quad \mathrm{CO}$| $\mathrm{L}, \mathrm{L} 3$ |
| ---: |
| $\& L 4$ |

\square
Code: 4G555
\square
III B.Tech. I Semester Supplementary Examinations February 2021
Heat Transfer
(Mechanical Engineering)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)
Marks CO

UNIT-I

1. Derive the general heat conduction equation in cylindrical coordinate system. Simplify the obtained equation to one dimensional conduction equation.

OR

2. a) What is thermal diffusivity? Explain its importance in heat conduction problems.
b) Explain the boundary and initial conditions?

UNIT-II

3. a) Derive the temperature distribution equation and heat transfer rate equation in a plane wall.
b) A wall of 0.5 m thickness is to be constructed from a material which has an average thermal conductivity of $1.4 \mathrm{~W} / \mathrm{mK}$. The wall is to be insulated with a material having an average thermal conductivity of $0.35 \mathrm{~W} / \mathrm{mK}$ so that the heat loss per square meter will not exceed 1450W. Assuming that the inner and outer surface temperatures are $1200^{\circ} \mathrm{C}$ and $15^{\circ} \mathrm{C}$ respectively, Calculate the thickness of insulation required.

OR

4. a) Classify the Fins. Define Effectiveness and efficiency of Fin.
b) A motor body is 360 mm in diameter (outside) and 240 mm long. Its surface temperature should not exceed $55^{\circ} \mathrm{C}$ when dissipating 340 W . Longitudinal fins of 15 mm thickness and 40 mm height are proposed. The convection coefficient is $40 \mathrm{~W} / \mathrm{m} 2 \mathrm{~K}$. Determine the number of fins required. Atmospheric temperature is $30^{\circ} \mathrm{C} . \mathrm{K}=40 \mathrm{~W} / \mathrm{m} \mathrm{K}$. Assume no heat loss from the tip of the Fin.

UNIT-III

5. a) Find the relation between Nuselt, Prandtl and Grashof number using dimensional analysis in Natural convection.
b) A vertical pipe of 20 cm outer diamer at surface temperature of $100^{\circ} \mathrm{C}$ in a room where the air is $20^{\circ} \mathrm{C}$. The pipe is 3 m long. What is the rate of heat loss per meter length of pipe?

OR

6. a) Compare the variation of velocity, temperature and local heat transfer coefficient along a vertical plate for the pate under natural convection and forced convection
b) A 30 cm long glass plate is hung vertically in the air at $27^{\circ} \mathrm{C}$ while its temperature is maintained at $77{ }^{\circ} \mathrm{C}$. Calculate the boundary layer thickness at the trailing edge of the plate. If a similar plate is place in a wind tunnel and air is blown over it at a velocity of $4 \mathrm{~m} / \mathrm{s}$, estimate the boundary layer thickness at its trailing edge?

UNIT-IV

7. a) Distinguish between filmwise and dropwise condensation.
b) Dry saturated steam at a pressure of 2.45 bar condenses on the surface of a vertical tube of height 1 m . The tube surface temperature is kept at $117^{\circ} \mathrm{C}$. Estimate the thickness of the condensate film and the local heat transfer coefficient at a distance of 0.2 m from the upper end of the tube.

OR

8. a) a) Define the following:
i) Irradiation, Emissivity and radiation shape factor.
b) b) Two parallel black plates $0.5 \mathrm{~m} \times 1.0 \mathrm{~m}$ are separated by 0.5 m distance. One plate is at $1100^{\circ} \mathrm{C}$ and the other at $600^{\circ} \mathrm{C}$. Compute the net radiant heat exchange between the two plates.

UNIT-V

9. a) Classify heat exchangers and list various applications of it.
b) A refrigerator is designed to cool $250 \mathrm{~kg} / \mathrm{h}$ of hot liquid of specific heat $3350 \mathrm{~J} / \mathrm{kg}$ K at $120^{\circ} \mathrm{C}$ using a parallel flow arrangement. $1000 \mathrm{~kg} / \mathrm{h}$ of cooling water is available for cooling purpose at a temperature of $10^{\circ} \mathrm{C}$. If the overall heat transfer coefficient is $1160 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$ and the surface area of heat exchanger is $0.25 \mathrm{~m}^{2}$, calculate the outlet temperature of the coolest liquid and water and also the effectiveness of the heat exchanger .

OR

10. a) Derive the expression for LMTD for parallel flow heat exchangers.
b) Hot oil with a capacity rate of $2500 \mathrm{~W} / \mathrm{K}$ flows through a double pipe heat exchanger. It enters at $360^{\circ} \mathrm{C}$ and leaves at $300^{\circ} \mathrm{C}$. Cold fluid enters at $30^{\circ} \mathrm{C}$ and leaves at $200^{\circ} \mathrm{C}$. If the overall heat transfer coefficient is $800 \mathrm{~W} / \mathrm{m} 2 \mathrm{~K}$, determine the heat exchanger area required for i) parallel flow and ii) Counter flow.

6M 4

[^0]

Code: 4GA51
2021

Managerial Economics and Financial Analysis

(Common to CE, ME \& ECE)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

Marks CO

UNIT-I

1. Define Managerial Economics and Discuss its nature and scope.

OR

2. Explain any two principles of Managerial Economics.
(a) Opportunity Cost Principle
(b) Risk and Uncertainty Principle
(c) Equi-Marginal Principle

> UNIT-II
3. Discuss the Cost-Output Relationship in short run and long run.

OR

4. Explain the following demand forecasting methods
(a) Consumers survey method
(b) Regression Method

UNIT-III

5. Discuss the problems and remedies of Public Sector Business Organisations.

OR

6. Explain the following pricing methods
(a) Market Skimming Pricing
(b) Peak Load Pricing

UNIT-IV

7. Discuss double entry book keeping and state the procedure for preparing balance sheet of the firm at the end of financial year.

OR

8. A company is considering two mutually exclusive projects. Both require an initial investment of $₹ 10,000$ each and have a life of five years. The cost of capital of the company is 10%. The estimated cash inflow of the two projects are as follows :

Year	1	2	3	4	5
Project A	4000	4000	4000	4000	4000
Project B	5000	6000	5400	4000	5000

You are required to calculate Net Present Value and suggest which project should be accepted. The PV factors at 10% from first year to fifth year are $0.909,0.826$, $0.751,0.683$ and 0.621 respectively.

UNIT-V

9. Explain the meaning of financial ratio and discuss its significance in analysing the financial performance of a firm.

OR

10. From the following information, you are required to prepare a Balance Sheet.
(i) Current Ratio - 1.75
(ii) Liquid Ratio - 1.25
(iii) Stock Turnover Ratio (Cost of sales/closing stock) - 9
(iv) Gross Profit Ratio - 25 per cent
(v) Debt collection period - 1.5 months
(vi) Reserves and surplus to capital - 0.2
(vii) Turnover to fixed assets - 1.2
(viii) Capital gearing ratio - 0.6
(ix) Fixed Assets to net worth - 1.25
(x) Sales for the year ₹ $12,00,000$

Hall Ticket Number :

Code: 4G551

III B.Tech. I Semester Supplementary Examinations February 2021

Applied Thermodynamics-II

(Mechanical Engineering)

Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Comment the efficiency of the Rankine cycle with respect to Carnot cycle. Also obtain the expression for efficiency of Rankine cycle.

7M CO1
L3
b) A basic steam power plant works on ideal Rankine cycle between 30 bar and 0.04 bar. The initial condition of steam being 0.8 dry and flow rate $10 \mathrm{~kg} / \mathrm{s}$ determine (i) Work required for pumping (ii) work done by the turbine (iii) cycle efficiency.

7M CO1
L3

OR

2. a) Draw T-S and H-S diagram of reheat Rankine cycle with the help of circuit diagram and derive its efficiency.

7M CO1 L3
b) In a Rankine cycle, the steam at inlet to turbine is dry saturated at a pressure of 35bar and the exhaust pressure is 0.2 bar. Calculate pump work, turbine work, Rankine efficiency and condenser heat flow. Assume flow rate of steam as $9.5 \mathrm{~kg} / \mathrm{s}$.

UNIT-II

3. a) Differentiate between water tube and fire tube boilers.
b) Discuss the working of Babcock and Wilcox boiler with a neat sketch.

OR

4. a) Derive the expression for the draught produced in terms of water column.
b) A boiler working at a pressure of 20 bar evaporates 10 kg of water per kg of coal fired from feed water entering at $40^{\circ} \mathrm{C}$. The steam at the inlet of the stop valve is 0.9 dry. Determine the equivalent evaporation from and at $100^{\circ} \mathrm{C}$.

7M CO2
L3

UNIT-III

5. a) Explain the supersaturated flow of steam through a nozzle and the significance of Wilson's line.
b) Steam enters a group of nozzles of a steam turbine at 12 bar and $220^{\circ} \mathrm{C}$ and leaves at 1.2 bar. The steam turbine develops 220 KW with a specific steam consumption of $13.5 \mathrm{~kg} / \mathrm{KWh}$. If the diameter of nozzles at throat is 7 mm , calculate the number of nozzles.

OR

6. a) Derive an expression for the condition for maximum discharge through a nozzle.
b) Dry saturated steam at 10 bar is expanded isentropically in a nozzle to 0.1 bar. Using steam tables only, find the dryness fraction of the steam at exit. Also find the velocity of steam leaving the nozzle when initial velocity is negligible.

7M CO3
L3
UNIT-IV
7. a) What are various sources of air leakage in to steam condenser? How does it affectthe performance of condensing plant?b) Describe with neat sketch the working of surface condenser.7M CO4L3
OR8. a) Explain the construction and working of, Edward's air pump.
b) A surface condenser is designed to handle $10,000 \mathrm{~kg}$ of steam per hour. The steam enters at 0.08 bar and 0.9 dryness and the condenser leaves at the corresponding saturation temperature, the pressure is constant throughout the condenser. Estimate cooling water flow rate per hour if cooling water temperature is limited to $100^{\circ} \mathrm{C}$.

UNIT-V

9. a) What is 50% Reaction Turbine?
b) Reaction Turbine runs at 3000 rpm and its steam consumption is $15400 \mathrm{~kg} / \mathrm{hr}$. the pressure of steam at a certain pair is 1.9 bar its dryness 0.93 and power developed by air is 3.5 kW . The discharging blade tip angle is 200 for both fixed and moving blades and the axial velocity of flow is 0.72 of the blade velocity. Find the drum diameter and blade height. Take the tip leakage steam as 8%, but neglect blade thickness.

OR

10. a) Show by graphical representation of pressure and velocity of a steam in impulse turbine.
b) In a De-Lavel turbine, the steam enters the wheel through a nozzle with a velocity of $500 \mathrm{~m} / \mathrm{s}$ and at an angle of 20° to the direction of motion of the blade. The blade speed is $200 \mathrm{~m} / \mathrm{s}$ and the exit angle of the moving blade is 25°. Find the inlet angle of moving blade, exit velocity of steam and its direction and work done per kg of steam.$7 \mathrm{M} \mathrm{CO4}$
\square
Code: 4G554

R-14

III B.Tech. I Semester Supplementary Examinations February 2021

Design of Machine Elements-I

(Mechanical Engineering)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

Marks CO
UNIT-I

1. a) Discuss, What are the factors to be considered for the selection of materials for the design of machine elements?
b) Discuss the BIS method of designation of steels with an example.

OR
2. a) What are preferred numbers? Find out the numbers of R5 basic series from 1 to 10 .
b) A shaft, as shown in Fig.1, is subjected to a bending load of 3 kN , pure torque of $1000 \mathrm{~N}-\mathrm{m}$ and an axial pulling force of 15 kN . Calculate the stresses at A and B .

Fig. 1
7M CO1

UNIT-II

3. a) What is stress concentration factor? What are the methods of reducing stress concentration?
b) A forged steel bar of 50 mm in diameter is subjected to a reversed bending stress of $250 \mathrm{~N} / \mathrm{mm}^{2}$. The bar is made up of steel 40 C 8 (Sut $=600 \mathrm{~N} / \mathrm{mm}^{2}$). Calculate the life of bar for a reliability of 90%. Assume $\mathrm{Ka}=0.44, \mathrm{~Kb}=0.85$.

OR
4. a) What is endurance limit? What are the factors that affect the endurance limit of a machine part?
b) A simply supported beam has a concentrated load at the centre which fluctuates from a value of P to 4 P . The span of the beam is 500 mm and its cross-section is circular with a diameter of 60 mm . Taking for the beam material an ultimate stress of 700 MPa , a yield stress of 500 MPa , endurance limit of 330 MPa for reversed bending, and a factor of safety of 1.3 , calculate the maximum value of P. Take a size factor of 0.85 and a surface finish factor of 0.9

UNIT-III

5. A bracket, as shown in figure below, supports a load of 30 kN . Determine the size of bolts, if the maximum allowable tensile stress in the bolt material is 60 MPa . The distances are: $\mathrm{L} 1=80 \mathrm{~mm}, \mathrm{~L} 2=250 \mathrm{~mm}$ and $\mathrm{L}=500 \mathrm{~mm}$.

14M CO3
OR
6. a) What are the advantages and disadvantages of welded joints?
b) A welded connection, as shown in Fig. 3 is subjected to an eccentric force of 7.5 kN . Determine the size of the welds if the permissible shear stress for the weld is $100 \mathrm{~N} / \mathrm{mm}^{2}$. Assume static conditions.

Fig. 3
10M CO3

UNIT-IV

7. a) What is a knuckle joint? Give practical examples of knuckle joint.
b) Design the rectangular key for a shaft of 50 mm diameter. The shearing and crushing stresses for the key material are 42 MPa and 70 MPa .

4M CO4

OR

8. Design and draw a cotter joint to support a load varying from 30 kN in Compression to 30 kN in tension. The material used is carbon steel for which the following allowable stresses may be used. The load is applied statically. Tensile stress = compressive stress $=50 \mathrm{MPa}$; shear stress $=35 \mathrm{MPa}$ and crushing stress $=90 \mathrm{MPa}$.

UNIT-V

9. a) What are the different criteria of designing a shaft?
b) Find the diameter of a solid shaft to transmit 25 kW at 300 rpm . Take the maximum allowable shear stress as $50 \mathrm{~N} / \mathrm{mm}^{2}$. If a hollow shaft is to be used in place of the solid shaft, find the inside and outside diameter when the ratio of inside to outside diameter is 0.6 .

14M CO4

OR

10. Design a cast iron protective flange coupling to connect two shafts in order to transmit 7.5 kW at 720 r.p.m. The following permissible stresses may be used: Permissible shear stress for shaft, bolt and key material $=33 \mathrm{MPa}$; Permissible crushing stress for bolt and key material $=60 \mathrm{MPa}$; Permissible shear stress for the cast iron $=15 \mathrm{MPa}$

[^0]:

