Hall Ticket Number :									1								
Code: 4G555								R-1	4								
	III E	3.Tech. I Se	eme	ster	Sup	•			•		natio	ons F	ebru	ary	2022		
				(Me	-	-	-	n sfei aine	erinc	(r						
		rks: 70 ny five full qu	Jesti				ing c		quest			each	unit (Hours Marks)	

1.	a)															6M	
	b)	Differentiate	e bet	weer	n the	rmoo	dynai	mics	and	Heat	trans	sfer.					4M
	c)	State Newton's law of cooling and Stefan Boltzman law of radiation. OR														4M	
2.	a)	Hot air at 80°C is blown over a 2-m by 4-m flat surface at 30°C. If the average convection heat transfer coefficient is 55 W/m ² °C, determine the rate of heat transfer from the air to the plate, in kW.													8M		
	b)	Describe di problems.	ffere	nt typ	oes c	of bo	unda	iry co	onditi	ons a	pplie	ed to	heat c	ondu	uction		6M
								UNIT	[_]]								
3.	a)	Spherical shaped vessel of 1.5 m diameter is 75 mm thick. Find the rate of heat leakage, if the temperature difference between the inner and outer surfaces is 300° C. Thermal conductivity of material is 0.3 kJ /mh°C.												6M			
	b)	Derive the t							•						erms c	of	-
		Fourier and	l Biot	: num	nbers	5.		•									8M
									R								
4.	a)													5M			
	b)	A long carbon steel rod length 40 cm and diameter 10 mm (K = 40 W/mK) is placed in such that one of its end is at 400°Cand the ambient temperature is 30° C. The film coefficient is 10 W/m ² K. Determine: (i) Temperature at mid															
		length of tl	he fir	ו. (ii)	Fin e	efficio	-	· /		trans	sfer r	ate fo	orm th	e fin.			9M
5.	c)	Illustrate th		volon		tofk				houn	doni		incid		ine		414
5.	a)	Illustrate the		•				•						•	•		4M
	b)	their mathematical expressions.									on and		6M				
	c)	What is the difference between free convection and forced convection? OR														4M	
6.	a)	Show that analysis.	Nu=	f (Re	e, Pr) for	forc	ced o	conve	ectior	n by	the	use of	f dim	nensio	nal	7M
	b)	Air at 25°C 300 mm ar heat loss fre	nd is	maiı	ntain	ed a	taι	unifor	rm te	mpei	ature	e at 9	95°C.	Calc			7M

4M

8M

10M

UNIT–IV

- 7. a) How the condensation and boiling phenomenon heat transfer takes place. 4M
 - b) Two large parallel planes with emissivities of 0.3 and 0.5 are maintained at temperatures of 527° C and 127°C respectively. A radiation shield having emissivities of 0.05 on both sides is placed between them. Calculate (i) Heat transfer rate between them without shield. (ii) Heat transfer rate between them with shield.

OR

- 8. a) Write short notes on Black body radiation.
 - b) Calculate the net radiant heat exchange per m² area for two large parallel plates at temperatures of 427° C and 27°C. (hot plate) = 0.9 and (cold plate) = 0.6.If a polished aluminum shield(=0.4) is placed between them, find the % reduction in the heat transfer.

UNIT-V

- 9. a) What is a Heat exchanger? Classify the heat exchangers and its applications. 6M
 - b) Obtain the expression for LMTD of a Parallel flow heat exchanger.

OR

- a) A counter flow heat exchanger is used to cool oil at a rate of 0.6 kg/s (C_P = 2.5 Kj/kgK) from 110°C to 35°C using water at 20 °C. The overall heat transfer coefficient is 1500 W/m²K. Assuming cooling water outlet temperature 80 °C and using NTU method calculate: (i) Water flow rate. (ii) Surface area required. (iii) Effectiveness of heat exchanger
 - b) Outline the concept of overall heat transfer coefficient in heat exchangers 4M
