Hall ⁻	Tick	et Number :	
Code		R-14	
Code	_	B.Tech. I Semester Supplementary Examinations November 2018	
		Digital Signal Processing	
		(Electrical and Electronics Engineering)	
		Time: 3 Houver all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks) *********	irs
		UNIT-I	
1.	a)	Obtain the DTFS coefficients of x(n) = $\cos\left(\frac{16\pi}{13}n + \frac{\pi}{6}\right)$. Plot its magnitude and	
		phase.	61\
	b)	Find the N point DFT of the sequence.	
		$x(n) = 4 + \cos^2(\frac{2\pi n}{N})$; $n = 0,1,2,N-1$. For N=8	81
		OR	· · ·
2.	a)	Evaluate linear convolution of the following sequences using DFT and	
		IDFT $x(n) = \{2,1\}$ and $h(n) = \{1,2\}$	81
	b)	Prove the following properties:	
		i) Convolution periodic discrete time sequences.	0.1
		ii) Time shift property of discrete time aperiodic sequence.	61\
3.	a)	Find the Eight point DFT of the sequence, $x(n) = \{1,1,0,-1,-1,0,1\}$ by Decimation in frequency FFT algorithm. Use the Eight point radix-2 DIT–FFT algorithm to find the DFT of the sequence	
		$x(n) = \{\frac{1}{\sqrt{2}}, 1, \frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}}, -1, -\frac{1}{\sqrt{2}}, 0\}$	
		$X(11) = \{ \frac{1}{\sqrt{2}}, 1, \frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}, -1, \frac{1}{\sqrt{2}}, 0 \}$	71
	b)	The DFT X(K) of sequence is given as	
	-,	$X(K) = \{0, 2\sqrt{2} (1-j), 0, 0, 0, 0, 0, 2\sqrt{2} (1+j)\}$	
		Determine the corresponding time sequence x(n) using DIF-FFT and draw its	
		flow graph.	7 ١
		OR	
4.	a)	What are the differences and similarities between DIT and DIF – FFT algorithm? Discuss in-place computation in the case of decimation in frequency algorithm.	6N
	b)	Let $x(n) = \left(1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}\right)$ and $h(n) = (1, 1, 1, 1)$. Compute the DFTs of $x(n)$ and	
		h(n)by the decimation in frequency algorithm. Using the above results, evaluate the circular convolution of $x(n)$ and $h(n)$.	81
		UNIT-III	
5.	a)	Design an analog Butterworth filter that has a gain of -2dB at 20rad/sec. and attenuation in excess of 10dB beyond 30 rad/sec.	7N
	b)	Find H(z) using impulse invariance method for the following transfer function.	
		$H_a(s) = \frac{(s+a)}{(s+a)^2 + b^2}$	7N

Code: 4G37C

- 6. a) Design a Butterworth low pass digital filter using bilinear transformation to meet the following specification.
 - i) An acceptable pass band ripple of 1db
 - ii) A pass band edge of 0.3 rad. &
 - iii) Stop band attenuation of 40db or greater beyond 0.6 8M rad.
 - The transfer function of a system is given by

$$H(z) = \frac{\frac{1}{4}z^{-1}}{1 - \frac{3}{4}z^{-1} + \frac{1}{8}z^{-2}}$$

Realize the above using direct form I, direct form II.

6M

UNIT-IV

- 7. a) Explain the frequency sampling method of designing FIR filters and draw the corresponding block diagram.

 - The frequency response of an FIR filter is given by

$$H() = e-j3 (1 + 1.8\cos 3 + 1.2\cos 2 + 0.5\cos)$$

Determine the coefficients of the impulse response h(n) of the FIR filter

7M

7M

a) Design a FIR low pass filter with the frequency response, using rectangular window.

$$h_d(\omega) = e^{\frac{-j\omega_c(N-1)}{2}} - \frac{\pi}{2} \le \omega \le \frac{\pi}{2}$$

$$= 0 \qquad : \text{ elsewhere}$$

For N=7 7M

b) A filter is to be designed with the following desired frequency response

$$H_d(\omega) = 0 ; -\frac{n}{4} < \omega < \frac{n}{4}$$
$$= e^{-j2\omega}; \qquad \frac{n}{4} < |\omega| < \pi$$

Find the frequency response of the FIR filter designed using rectangular window defined as given below: $w_R(n) = 1$; -5 n 5

7M

UNIT-V

- 9. a) Analyse the basic concepts of spectral analysis of non-stationary signals. Explain how short-time Fourier transform used in the analysis. 7M
 - b) With the diagram, explain the oversampling sigma-delta A/D converter 7M structure.

OR

- a) Why signal compression is required? With the relevant block diagram discuss 10. the functioning of signal compression system. 7M
 - Explain the concept of single echo filter and multiple echo filter of time domain operations in musical sound processing. 7M

Hall Tid	cket Number :									Г	
Code:	4GA51	l l		1	J.			J.	I		R-14
	B.Tech. I Sem	ester S	uppler	mento	ary Exc	ımin	atio	ns N	love	embe	er 2018
	Manc	igerial						l An	alys	sis	
Max. N	Marks: 70	((Commo	on to (JE, ME	& EC	上)			Tir	me: 3 Hours
	er all five units	by choo	osing on	e que	estion fro	om e	each	unit	(5 x		
				***		_					
1.	Define Price ela the different m between Price E	ethods o	f measu	asticity ring P	rice Elas	sticity	of c	dema	•		
					OR						
2.	Define Manage What is the rela			erial E	conomics			-		_	Il Economics.
					JNIT-II						
3.	What is the sh between Econo	•	•		-			•		•	
					OR						
4.	Define and sho output (Q*) of a cost (FC) = Rs.	firm if to	tal cost	(TC) =	Rs. 631	0; tota	al rev	enue/	(TR)) = Rs	s. 4130; fixed
				U	NIT-III						
5.	Compare and Competition and				d Long-r	un eq	quilibr	ium (condit	tions (under Perfect
					OR						
6.	Define Oligopol Stackelberg Du	•		e. Desc	cribe how	v pric	e and	d out	put is	dete	rmined under
				U	NIT-IV						
7.	Why is capital Elaborate.	importan	t for a fii	m? W	hat are t	the va	ariou	s sou	ırces	of rai	ising capital?

OR

8. What is capital budgeting? Define Net Present Value and Discount Rate. Write a brief note on Pay Back Method.

UNIT-V

- 9. What do you understand by the term 'Ledger' and 'Trial Balance'? Name two methods of preparing a Trial Balance. Prepare a purchase book from the following information:
 - a) Purchase of goods costing Rs. 5000/- from M/s Ramesh & Co. vide invoice no. 120 dated 15/09/2017.
 - b) Purchase of Fixed Assets costing Rs. 8000/- from M/s Renu & Co. vide invoice no. 016 dated 20/09/2017.
 - c) Paid wages of Rs. 600/- in cash vide receipt no.16 dated 25/09/2017.

OR

10. What is the meaning of Accounting Ratios? What are the objectives of ratio analysis? List out the advantages and limitations of ratio analysis.

Hall	Γicke	et Number :
Code	: 4G	353 R-14
	III B	.Tech. I Semester Supplementary Examinations November 2018
		Digital IC Applications
Max	110	(Electronics and Communication Engineering) arks: 70 Time: 3 Hours
		er all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)

4	٥)	What is fan-in and fan-out of a logic family?
1.	a)	Ç ,
	b)	What is diode logic? Why it is not preferred? OR
2.	a)	Describe the evolution of TTL families.
	b)	Describe the propagation delay of a logic element and what are its effects?
	-,	UNIT-II
3.	a)	List out any five important features of VHDL
	b)	Present syntax of VHDL architecture definition
		OR
4.	a)	What is an entity? Write down the syntax of entity?
	b)	What is a library? What is the importance of library?
		UNIT-III
5.	a)	Explain the importance of null statement in VHDL with an example
	b)	Explain about inertial delay and transport delay with an example
		OR
6.	a)	Explain the structure of various loop statements in VHDL using examples
	b)	Write a VHDL code for 1x4 demultiplexer using behavioral modeling.
_		UNIT-IV
7.		Design a 5-to-32 decoder using 74x138s and explain its operation
0		OR Design a 22 to 1 multipleyer using 74x151a and explain its energtion
8.		Design a 32-to-1 multiplexer using 74x151s and explain its operation
9.	a)	UNIT-V Design a positive edge triggered D flipflop with preset and clear using NAND
0.	u,	gates
	b)	Explain the clocked synchronous state-machine structure with necessary
		diagrams OR
10.	a)	Write a vhdl code for D latch using structural style
-	b)	Write a vhdl code for upcounter with enable and clear inputs
	,	•
