Hall Ticket Number :										
----------------------	--	--	--	--	--	--	--	--	--	--

Code: 4G453

III B.Tech. I Semester Supplementary Examinations May 2017

Automata and Compiler Design

(Information Technology)

Max. Marks: 70

Time: 3 Hours

Answer all five units by choosing one question from each unit (5 x 14 = 70Marks)

UNIT–I

1. Write the procedure for finding a DFA equivalent to a given NFA. Construct DFA equivalent to the following NFA. Show the acceptance of the string 00011 on both the Fas.

	0	1
q0	{q0,q1}	{q0}
q1		{q2}
q2		{q3}
q3		
(Final State)		
	~ ~	

14M

7M

7M

7M

7M

R-14

OR

- 2 a) Define a Regular expression. Find regular expressions for the following languages over the alphabet {a, b}.
 - i) All strings of odd length
 - ii) All strings that end with either ab or bb
 - iii) All strings that contain even number of a's
 - b) Construct a DFA for the recognizing the language of all strings over the alphabet {0, 1} and contain the substring 10. Show the acceptance of the string 001011.

UNIT–II

- a) Explain the role of syntax and semantic analysis phases in a compiler by taking a suitable example(s).
 7M
 - b) Write the rules/steps to calculate the First and Follow sets of variable in a given CFG. Find First and Follow sets of the variables in the following grammar.

 $S \rightarrow AaBbC$ $A \rightarrow ab / ba / CB /$

 $B \rightarrow bb / cc \qquad C \rightarrow abc / Bc$

OR

4. What is a recursive descent parser? Construct recursive descent parser for the following grammar. Show the moves of the parser for the string.

$$S \rightarrow Ab / Ba$$
 $A \rightarrow Ba / BB / ab$ $B \rightarrow ab / bb / b$ 14M

UNIT–III

- 5. a) What is a type expression? Explain about the equivalence of type expression with suitable examples.
 - b) What is syntax directed translation? Write syntax directed translation for storing the type of a variable into symbol table. (Assume a suitable grammar for the declaration of variables).

OR

- 6. a) Discuss about polymorphic functions and the type checking of these functions. 7M
 - b) Explain about the general model of an LR parser.

UNIT–IV

7.	a)	Write about the advantages of intermediate code? Discuss about three address code with examples.	7M
	b)		
		table in case of nested procedures.	7M
		OR	
8.	a)	What is the need for dynamic storage allocation? Discuss the methods of	
	ŗ	dynamic storage allocation strategies.	7M
	b)	Generate three address code for the following code segment and write the corresponding triples.	
		for (i=1; i<=10;i++) { a[i] = a[i+1] * 2; b[i] = a[i]; }	7M
		UNIT-V	
9.	a)	Explain in detail about peephole optimization.	10M
	b)	What is DAG? Explain how DAG is useful in code generation.	4M
		OR	
10.	a)	What is the use of data flow analysis? Write short notes on data flow analysis	
		of flow graph of basic blocks.	7M
	b)	Discuss in brief about register allocation and assignment?	7M

dar	4G1	51 R-14	
ae:	-	B.Tech. I Semester Supplementary Examinations May 2017	
		Computer Networks	
		(Common to CSE & IT)	
	-	tks: 70 Time: 3 Hou er all five units by choosing one question from each unit (5 x 14 = 70Marks) ********	Jrs
		UNIT–I	
1.	a)	Compare the functions of ISO model and TCP/IP protocol architectures.	
	b)	Distinguish between circuit switching and packet switching networks.	
		OR	
2.	a)	What is computer network? Write about network hardware and software.	
	b)	Discuss the characteristics of co-axial cable and give its advantages and	
		disadvantages.	
2	c)	Define checksum. Explain how check sum is used for error detection with example.	
3.	a) b)	Draw the frame format of Ethernet and explain it.	
	5)	OR	
4.	a)	Describe about the working of stop and wait protocol.	
	b)	Explain CSMA/CD protocol in MAC layer.	
	,	UNIT-III	
5.	a)	Describe about flooding and shortest path routing algorithm.	
	b)	What is a subnet? Differentiate between virtual circuits and datagram subnets.	
	,	OR	
6.	a)	Explain about hierarchical routing algorithm with example.	
	b)	Define internetworking. Explain about ICMP protocol.	
		UNIT–IV	
7.	a)	Describe the services offered by transport layer.	
	b)	What is flow control? Explain its role in transport layer.	
		OR	
8.	a)	Briefly explain the elements of transport layer.	
	b)	Explain about TCP header format.	
		UNIT-V	
9.	a)	How security is maintained in internet. Illustrate it with examples.	
	b)	Write short notes on FTP and HTTP.	
4.0	`	OR	
10.	a)	Explain the naming hierarchy in DNS with an example.	
	b)	Write about WWW and multimedia.	

11-11-	T: - 1										
		et Number : R-14									
Code		451 III B.Tech. I Semester Supplementary Examinations May 2017]								
		Design and Analysis of Algorithms									
		(Common to CSE & IT)									
Ма		Time: 3 H wer all five units by choosing one question from each unit (5 x 14 = 70Marks)									

1		UNIT-I	1 4 4 4								
1.		Explain in brief about Asymptotic Notations with examples OR	14M								
2.	a)										
	,	count approach. Illustrate with an example.	6M								
	b)	Compare with an example simple Find and Collapsing Find	8M								
		UNIT–II									
3	a)	Write and explain the control abstraction for Divide and Conquer.	4M								
	b)	Find an optimal solution to the knapsack instance $n=7$ objects and the capacity of knapsack m=15. The profits and weights of the objects are									
		(P1, P2, P3, P4, P5, P6, P7) = (10, 5, 15, 7, 6, 18, 3)									
		(W1, W2, W3, W4, W5, W6, W7) = (2, 3, 5, 7, 1, 4, 1)	10M								
		OR									
4.	a)		7M								
	b)	elements: 24,12, 35, 23,45,34,20,48 Discuss the single – source shortest paths algorithm with suitable example.	7M								
	0)		7 101								
5.	a)) What is principle's of optimality? Explain how travelling sales person problem									
		uses the dynamic programming technique with example.	7M								
	b)	Give the statement of sum –of subsets problem. Find all sum of subsets for $n=4$, (w1, w2, w3, w4) = (11, 13, 24, 7) and M=31.Draw the portion of the									
		state space tree using fixed – tuple sized approach.	7M								
		OR									
6.	a)	Describe the Dynamic 0/1 Knapsack Problem. Find an optimal solution for the									
		dynamic programming 0/1 knapsack instance for n=3, m=6, profits are (p_1, p_2, p_3) , $(1, 2, 5)$ weights are (w_1, w_2, w_3) , $(2, 2, 4)$	014								
	b)	(p1, p2, p3) = (1, 2, 5), weights are $(w1, w2, w3) = (2, 3, 4)$. Briefly explain Hamiltonian cycles using backtracking.	8M 6M								
	5)		OIVI								
7.	a)	What are connected and bi-connected components? Explain with suitable									
		example.	7M								
	b)	Write a Program schema for a LIFO branch and bound search for Least-cost answer node.	7M								
		OR	7 101								
8.	a)	Write a short note on spanning trees.	5M								
	b)	Draw the portion of state space tree generated by LCKNAP for the Knapsack									
		instances: n=5,									
		(P1, P2,P5) = (10, 15, 6, 8, 4) , (W1, W2,W5) = (4, 6, 3, 4, 2) and M = 12.	9M								
		UNIT-V	5101								
9.	a)		7M								
	b)	Explain the differences between decision and optimization problems.	7M								
		OR									
10.	a)	Write the properties of NP-Complete and NP-Hard Problems	7M								
	b)	State Cook's theorem and explain its importance.	7M								

Hall	Ticke	et Number :															7
Code	Code: 4G357									R-14	4						
	II.	IB.Tech. IS	Sem	este	er Su	Jppl	lem	ento	ary l	Exar	ninc	atio	ns Mag	y 20	017		
			Μ	icro	-					nterf	aci	ng					
Max	Mc	arks: 70			(C	omn	non	to C	:SE 8	& II)				Tin	ne:3H	lours	\$
-		all five units	by c	choc	osing	one	-		n fro	om e	each	uni [.]	t (5 x 1				
							****	***** UNI	т_і								
1.	a)	Distinguish	minir	num	and	maxi	mum			oncer	ot in 8	3086	uP.			(6M
	b)	Explain abo											p				8M
	,	·						OF			•						
2.	a)	What is the	purp	ose	of ins	struct	ion s	trear	n by	te qu	eue i	n 80	86?			f	6M
	b)	Discuss abc	out se	egme	entati	on m	iemo	ry co	ncep	ot in 8	3086	μP.				8	8M
								UNI	T—II								
3.	a)	Describe 82	55 P	PI m	ode2	2 ope	ratio	n wit	h an	exar	nple.					8	8M
	b)	Distinguish	SRA	M &	DRA	М										(6M
								OF	R								
4.	a)	Illustrate the	e bloo	ck dia	agrar	n of 8	8255	PPI	and	expla	ain its	s fea	tures.			8	8M
	b)	Describe the	e cor	ntrol v	word	form	at of	825	5 for	diffe	rent r	node	es.			(6M
								UNI	[_]]]								
5.	a)	What is DM	A? E	xplai	n ab	out N	laste	er and	d Sla	ve m	ode	conc	ept.			ę	9M
	b)	Illustrate the	e bloo	ck dia	agrar	n of 8	8257	DM/	A cor	ntrolle	er.					Ę	5M
•	、						. /	OF	R								
6.	a) b)	What is mea		-	•			0?									4M 0M
	b)	Describe 82	.59 P	ic a	rcnite	ecture		UNI								П	JIVI
7.	a)	Describe the	e arc	hitec	tural	feati	L				т					ş	8M
	b)	Distinguish										fer s	chemes	S.			6M
	,		,				-,	OF									
8.	a)	Explain how	, TTL	. to F	RS23	2C a	nd R	S232	2C to		conv	/ersi	on is po	ssib	ole?	7	7M
	b)	Distinguish a	asyn	chro	nous	and	sync	hron	ous	data	trans	fer s	chemes	S.		-	7M
								UNI	Г–V								
9.	a)	List out the	salie	nt fea	ature	s of I	Penti	um p	oroce	essor	S					2	4M
	b)	Distinguish	the a	rchit	ectur	al fe	ature	s of	8028	6 an	d 803	386 µ	JPs.			1(0M
								OF	R								
10.	a)	Explain the	conc	ept c	of rea	l and	d pro	tecte	d mo	ode s	egme	entat	ion			1(0M
	b)	Describe the	e fea	tures	s of p	aginę	-		ism.							4	4M
							*	* *									

Hall	Ticke	et Number :	
Code	• 4C	R-14	
Coue		I B.Tech. I Semester Supplementary Examinations May 2017	
		Operating Systems	
		(Common to CSE & IT)	
-		Time: 3 Hou er all five units by choosing one question from each unit (5 x 14 = 70 Marks)	Jrs
		****** UNIT–I	
4			7M
1.	a) b)	Explain operating system services and systems calls. Discuss types of operating systems.	71VI 7M
	D)	OR	7 101
2.	a)	Explain states of process with neat sketch and discuss the process state	
	-)	transition with a neat diagram.	7M
	b)	Define thread. Differentiate user threads form kernel threads.	7M
		UNIT–II	
3.	a)	Explain Peterson's Solution.	7M
	b)	Explain atomic transactions.	7M
		OR	
4.	a)	Explain Deadlock handling methods.	7M
	b)	Explain Banker's deadlock-avoidance algorithm with an illustration.	7M
		UNIT–III	
5.	a)	Explain memory management without swapping.	7M
	b)	Explain about contiguous memory allocation with neat diagram.	7M
		OR	
6.	a)	Explain the services provided by a kernel I/O subsystem.	7M
	b)	Explain FIFO page replacement algorithm.	7M
		UNIT–IV	
7.	a)	Explain the two-level directory and three-level directory structure.	7M
	b)	Explain file allocation methods	7M
0	-)	OR	714
8.	a) b)	Explain and compare the C-LOOK and C-SCAN disk scheduling algorithms. Explain Tertiary storage structure.	7M 7M
	D)	UNIT-V	7 101
9.	a)	Explain protection mechanism.	7M
	b)	What is meant by Access control. Explain Revocation of Access Rights.	7M
		OR	
10.	a)	Describe firewalling to protect systems and networks.	7M
	b)	Explain Computer security classification.	7M
