Hall Ticket Number :							_
Code: 5G655						R-15	_

III B.Tech. I Semester Supplementary Examinations November 2019

Design and Drawing of Reinforced Concrete Structures

(Civil Engineering)

Max. Marks: 70 Time: 3 Hours

PART-A

Answer any One questions (1 x 28 = 28 Marks)

- Design a roof slab with restrained edges which is continuous on three edges and discontinuous on one short edge for a room of 4.8 m X 3.6 m clear in size. The width of the beams on all edges is 230mm. Take the roof finishes as 2.0 kN/m² and that of the live load for roof as 1.5 kN/m². Use M-20 grade concrete and Fe 500 steel. Detail the following to scale.
 - (a) Draw the reinforcement of the slab in plan view.
 - (b) Draw cross sections of the slab in both directions showing reinforcement.

OR

 Design an isolated square footings to carry a column load of 1090 kN for a 300mm square tied column containing 20 mm bars as the longitudinal bars. Assume soil safe bearing capacity as 150 kN/m². Use M-25 grade concrete and Fe-500 grade steel. Assume unit weight of soil as 17 kN/m³.

Draw to scale, showing reinforcement details

- (a) Plan view of the footing.
- (b) Sectional elevation of the footing.

PART-B

Answer *any Three* questions ($3 \times 14 = 42 \text{ Marks}$)

- 3. A simply supported 'T' beam has an effective span of 8m. The flange of the 'T' beam is 1000mmX100mm and the web below is 250mmX400mm. It is reinforced with 5-25 mm Fe415 grade steel bars in tension at an effective cover of 50mm. Determine the magnitude of two equal point loads which can be supported at its one-third points. Assume f_{ck}=20N/mm².
- Design a rectangular beam section of 230 mm width subjected to an ultimate bending moment of 90 kNm and an ultimate shear force of 50 kN. Assume M 20 grade concrete and Fe 500 grade steel.
- 5. Design an axially loaded tied column 300mm X 450mm pinned at one end and fixed at other end with an unsupported length of 3.5m for carrying a factored load of 2200kN. Use M25 grade concrete and Fe 500 grade steel.
- Design a short column under biaxial bending with the following data. Size of the column 450mmX450mm. Factored 'Pu'=1000kN, Mux=75kNm, Muy=60kNm. Reinforcement is assumed to be distributed equally on four sides. Use M20 grade concrete and Fe 500 grade steel.
- 7. A rectangular cantilever beam of span 4m is 350mmX650mm in cross section. Bending moment at the support due to uniformly distributed service loads is 150 kNm out of which 50% moment is due to permanent loads. Check the beam for deflection. It carries 3-25mm bars in tension at an effective cover of 50mm. M20 grade concrete and Fe415 steel are used.

Hall Ticket Number :							
						D 15	
						K-13	

Code: 5G654

III B.Tech. I Semester Supplementary Examinations November 2019

Environmental Engineering-I (Civil Engineering) Max. Marks: 70 Time: 3 Hours Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks) UNIT-I Explain the objectives of water supply system 5M 1. a) What are the various sources of water? Explain the suitability of sources of b) water with reference to quantity and quality. 9M 2. a) What is Per capita demand? Explain the factors affecting Per capita demand of water. 7M b) Estimate the population of a city for the years 2041 using Geometrical and incremental increase methods, based on the census data given below. Year 1961 1971 1981 1991 2001 2011 7M 198000 250000 410000 Population 160000 345000 580000 UNIT-II 3. a) Explain the reservoir intake structure with neat sketch. 7M Explain the systems of water distribution 7M b) OR 4. a) Explain the following chemical characteristics of water ii) Hardness and iii) chloride 9M i) pH Explain the various water borne diseases 5M UNIT-III 5. a) Explain the layout of conventional water treatment units and their functions 7M Design a sedimentation tank to treat 5 MLD of water. Assume required data. 7M b) OR 7M 6. a) With neat sketch, explain the working principle of rapid sand filter. b) Explain the importance of break point chlorination in determining dosage of disinfectant. 7M UNIT-IV 7. a) Explain the various methods of sewerage systems 7M b) Explain the factors affecting the quantity of sewage 7M OR 7M 8. a) Explain the various shapes of sewers and their suitability. What are the various sewer appurtenances? Explain in detail about manhole with neat sketch. 7M UNIT-V 9. a) Explain the physical characteristics of sewage 7M Determine the 5 day BOD of a sample at 20°C, if its 3 day BOD at 20°C is 250 b) mg/lit, K_D at 20° C is 0.1/day 7M OR 10. a) Write a note on i) Grit chamber ii) Oxidation pond 7M Design a septic tank for a apartment of 100 persons with daily sewage flow of 120 lpcd. 7M

Jall Tials	ot Numbar:													
ıalı IICK	et Number :											R -1	15	
ode: 50				. 1			_		,.					
III	B.Tech. I Se	meste	-	•		-	Exar Seol			s Nc	ovem	ber 2019		
			•			_	ering							
Max. Mo Answ	arks: 70 ver all five uni	ts by ch	·		e qu		n fro	•	ach u	ınit (5 x 14	Time: 3 = 70 Marl		
						UNIT	Г—І							
1.	Describe bri	efly geo	logy I	mpor	tance	e for	civil e	engin	eerir	ng Ap	plicati	ion?		14M
						OF	₹							
2.	Define weat	thering	and (Sive	brief	note	e on	type	s of	wea	atherin	g, Effects	of	
	weathering of	of rocks	?					•						14M
						UNIT	-II							
3.	Define Mine	ral and	Descr	ibe b	riefly	Impo	ortan	ce of	stuc	ly of	Minera	al?		14M
						OF	₹							
4.	Give brief no	ote on P	hysica	al pro	perti	es of	Felc	lspar	, Qua	artz,	Olivine	e, Augite a	and	
	explain its in	nportan	ce?											14M
								ā						
						UNIT								
5. a)	Define Rock	and De	scribe	e brie	fly ty	pes (of Ro	cks a	and it	s for	matior	ns?		7M
b)	Explain brief	ly Dyke	s and	sills?	•									7M
						OF	?							
6.	Explain brief	ly differ	ent typ	oes o	f Fol	ds w	ith ne	at sk	etch	es?				14M
					ı	UNIT	-IV							
7.	Give brief r		cause	es of	Lar	dslid	les a	nd e	xplai	n br	iefly tl	neir impac		
	control techr	niques?												14M
						OF	₹							
8.	Describe bri	efly Gro	undwa	ater e	explo	ratio	n tec	hniqu	ies?					14M
						UNIT	-V							
9.	Discuss Ty	•				•		•	imp	ortar	nce o	f Geologi		
	consideratio	ns in the	e sele	ction	ot a			•						14M
						OF	₹							
10.	Give brief no	ote on E	ffects	of tu		•	n the	grou	nd?					14M
					**	***								

Hall Ticket Number :

R-15

Code: 5GA51

III B.Tech. I Semester Supplementary Examinations November 2019

Managerial Economics and Financial Analysis

(Common to CE, ME & ECE)

Max. Marks: 70

Time: 3 Hours

Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)

UNIT-I

1. What do you mean by Managerial Economics? Describe the Nature and Scope of Managerial Economics?

OR

2. Discuss about the time perspective in business decision? Under what kind of business decisions time perspectives become an important consideration?

UNIT-II

3. What is meant by Elasticity of Demand? How is the Elasticity of Demand measured?
OR

4. Discuss about the cost – output relationship in the short run and the long run?

UNIT-III

5. "Monopolistic competition is the middle ground between perfect completion and monopoly" explain the statement in detail.

OR

6. Briefly explain the features, merits and demerits of public and private sector business organizations?

UNIT-IV

7. A company has **two** investment proposals each costing Rs.1,00,000 and the expected cash inflows are given below;

Year	1	2	3	4	5
Project – A	20,000	30,000	50,000	50,000	20,000
Project – B	35,000	35,000	35,000	35,000	35,000

The cost of capital is 10%. Calculate NPV and Profitability Index. Suggest the management.

OR

8. Define Accounting. Explain Double Entry Book Keeping System. Explain the classification of Accounts with detail examples?

UNIT-V

9. Elucidate the Solvency and Profitability Ratios?

OR

10. The following figures are extracted from the Balance Sheet of X Ltd., as on 31st December.

Particulars	2017 (Rs.)	2018 (Rs.)	Particulars	2017 (Rs.)	2018 (Rs.)
Stock	25,000	40,000	Bills Payable	2,000	3,000
Debtors	10,000	16,000	Provision for taxes	5,000	7,000
Cash at Bank	5,000	4,000	Bank Overdraft	5,000	15,000
Creditors	8,000	15,000			

Calculate the Current Ratio and Acid Test Ratio for the two years and comment on the Liquidity position of the company.

Hall Ticket Number :

R-15

Code: 5G651

III B.Tech. I Semester Supplementary Examinations November 2019

Structural Analysis-II

(Civil Engineering)

Max. Marks: 70 Time: 3 Hours

Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)

UNIT-I

- 1. A parabolic arch hinged at the springings and crown has a span of 20m. The central rise of the arch is 4m. It is loaded with an u.d.l of intensity 2KN/m on the left 3m length. Calculate
 - a) The direction and magnitude of reactions at the hinges
 - b) The bending moment, normal thrust and shear at 4m and 15m from the left end
 - c) Maximum positive and negative bending moments?

14M

OR

2. a) Explain the effect of rib shortening in two-hinged arches.

- 6M
- b) A two –hinged parabolic arch of span 20m and rise 4m carries an u.d.l of 50KN/m on the left half of the span. Find the reactions at the supports and the position and amount of maximum bending moment?

8M

UNIT_II

- 3. a) Under what circumstances, the portal frames may undergo side sway?
- 4M
- b) Analyse the portal frame shown in figure below by slope- deflection method. Also draw the S.F and B.M diagrams.

10M

4. Analyse the portal frame shown in figure below by moment distribution method. Also draw the shear force and bending moment diagrams.

14M

 Analyse the continuous beam loaded as shown in figure below by Kani's method. Sketch the B.M.D.

14M

Code: 5G651

OR

6. Analyse the frame loaded as shown in figure below by Kani's method and sketch the B.M.D.

14M

7. Analyse the continuous beam shown in figure below by flexibility method and draw the B.M.D.

14M

8. Analyse the continuous beam shown in figure below by stiffness method and draw the B.M.D.

14M

9. a) What are the assumptions made for evaluation of the fully plastic moment?

5M

b) A two span continuous beam of uniform section loaded with ultimate loads as shown in figure below. Determine the required plastic moment of resistance?

10. What are the basic theorems of plastic analysis? Explain them in detail.

14M

H	lall Ticket Number :											
_	ode: 5G653				_						R-15	
C	III B.Tech. I Se	meste	er Sup	plen	nent	arv E	Exar	minc	ation	s Novem	ber 2019	
			ater l									
				(Civi	il Eng	ginee	ering)				
٨	Nax. Marks: 70 Answer all five unit	s by c	hoosir	ng on	e que	estior	n fro	m ec	ach u	unit (5 x 14	Time: 3 Hours = 70 Marks)	
						***** NIT-I						
a)	Illustrate the hydrolo	gic cy	cle. Di	scuss			cycl	le pro	ocess	s is affecte	ed with the human	
,	activities.						•	·				7M
b)	Thiessen polygons of	onstru	cted fo	or a	netwo	ork o	f 10	rain	gau	iges in a i	river basin yielded	
	Thiessen weights of 0											
	recorded at these gau 168 and 150 mm re	•	•	•								
	method.	оросич	voly, a	otom		10 av	rorag	jo uc	ypui ,	or railliair i	by Thiodon moun	7M
						OR						
a)	Describe the natural	siphor	recor	ding t	vpe r	ain q	auge	e with	n a ne	eat sketch.		6M
b)	Explain the following	-		_		_	_				a (ii) rainfall mass	
/	curve (iii) hyetograph		` '								(,	8M
					UN	IIT–II						
a)	What is evapotranspi	ration'	? Expla	ain th	e fact	ors a	affect	ting e	evapo	otranspirati	on.	7M
b)	The following mass of	curve \	was ob	taine	d for	a 14	-hou	r effe	ective	e rainfall pe	eriod that occurred	
	over a catchment a	ea of	25 kn	n². C	alcula	ate th	ne vo	olum	e of	runoff, wh	en the -index is	
	0.35cm/h.				_							
	Time (h):	0	2	4	6	8		10	12	14		
	Accumulated rainfall:	0	1.0	3.0	5.5		7 8	3.0	9.0	10		7M
						OR						
a)	Explain the physiogra	aphic f	actors	of the	e basi	in wh	ich a	affect	the	runoff		7M
b)	Discuss in detail abo	ut the	infiltrat	ion in	dices	3						7M
					UN	IT–III						
a)	Define unit hydrograp	h. List	the ass	sumpt	ions a	and lii	mitat	tions	of un	it hydrogra _l	oh theory.	6M
b)	The following are the	e total	runoff	ordir	nates	in m	³ /s,	and	the c	correspondi	ing base flow of a	

1.

2.

3.

4.

5.

catchment l	hav	ing a	drain	age a	rea of	104	km². [Derive	the 2	-h uni	t hyc	lrogr	aph	ordir	ates	i
Time (h):	0	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30

Time (h):	0	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30
Total flow:	0	11	170	260	266	226	188	157	130	108	91	76	64	54	46	32
Baseflow:	0	8	9	10	12	14	17	19	22	25	26	29	29	30	32	32

OR

8M

Code: 5G653

6. a) Describe the S-curve method of developing a 6-h UH by using 12-h UH of the catchment.

b) The ordinates of 4-h UH of a basin of area 300 km² measured at 1-h intervals are 6, 36, 66, 91, 106, 93, 79, 68, 58, 49, 41, 34, 27, 23, 17, 13, 9, 6, 3 and 1.5 m³/s respectively. Obtain the ordinates of a 3-h UH for the basin using the S-curve technique.

8M

6M

UNIT-IV

7. a) Derive an expression for the steady state discharge of well, fully penetrating into a confined aquifer.

6M

b) In an unconfined aquifer of thickness 28m, a 15 cm diameter well is pumped at a constant rate of 240 lpm at a steady state, the drawdown in observation wells located 10 m and 100m respectively, was observed to be 3.8 m and 0.06 m. Determine the aquifer parameters. Also determine the radius of influence and drawdown at the well.

8M

OR

8. a) Give the comparison between Kennedy's theory and Lacey's theory and draw typical cross section of the Lacey's regime channel.

7M

- b) A tube well penetrates fully into an unconfined aquifer. Calculate the discharge from the tube well under the following conditions:
 - i. Diameter of the well = 300 mm
 - ii. Drawdown = 2.5 m
 - iii. Effective length of the strainer under the above drawdown = 12 m
 - iv. Coefficient of permeability of aquifer = 0.5 mm/s
 - v. Radius of zero drawdown = 500 m

7M

UNIT-V

9. a) Give complete classification of methods of irrigation and illustrate Furrow and uncontrolled flooding methods.

6M

- b) After how many days will you supply water to soil (clay loam) in order to ensure efficient irrigation of the given crop, if
 - i. Field capacity of soil = 27%
 - ii. Permanent wilting point = 14%
 - iii. Dry density of soil = 15 kN/m³
 - iv. Effective depth of root zone = 75 cm
 - v. Daily consumptive use of water for the given crop = 11 mm.

8M

OR

10. a) Define duty, delta and base period, and the deduce the relation among them

6M

A water course commands an irrigated area of 800 hectares. The intensity of irrigation of rice in this area is 50%. The transplantation of rice crop takes 15 days and the total depth of water required by the crop is 60cm on the field during the transplantation period, given that the rain falling on the field during this period is 15cm. Find the duty of irrigation water for the crop on the field during transplantation, at the head of the distributory, assuming losses of water to be 20% in the water course. Also calculate the discharge required in the water course.

8M