UNIT-I 1. a) Deduce an expression for the effort required to raise a body of weight W on an inclined plane with usual notations. 7M Co1 b) A body on a rough horizontal surface requires a force of 240 N inclined at 25° just to pull it and 280 N just to push it at the same angle. Determine the weight of the body and the coefficient of friction. 7M Co1 0 0 7M Co1 2. a) Describe with neat sketch the working principle of cone clutch. 7M Co1 b) A single plate clutch with both sides of the plate effective, is lined with asbestos having coefficient of friction of 0.3. The allowable pressure on fiction lining is 0.18 MPa. The inside and outside diameters of the friction lining are 90 mm and 300 mm respectively. Assuming uniform pressure, find the safe power that can be transmitted by this clutch at 300 rpm. 7M Co1 3. A simple band brake of drum diameter 600 mm has a band passing over it with an angle of contact of 210°. While one end of band is connected to the lever fulcrum, the other end is connected to the lever. The brake lever is 1000 mm long. Coefficient of friction is 0.3.3. Find the effort required at the end of lever to stop the rotation of the drum. The drum absorbs 15 kW at 720 rpm. 14M Co2 A ship engine is propelled by a rotor of mass 5000 kg and a radius of gyration of 0.5 m. The rotor rotates at 2100 rpm clockwise when viewed from the stern. Find the gyroscopic couple for the following conditions: 5M Co2 b) A ship engine is propelled by a rotor of mass 5000 kg and a radius of gyration of 0.5 m. The rotor rotates at 2100 rpm clockwise when viewed from the stern. Find the gyroscopic couple for			Hall Ticket Number :]
III B.Tech. I Semester Supplementary Examinations February 2021 Dynamics of Machinery (Mechanical Engineering) Max. Marks: 70 Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks) ********** Marks co UNIT-I a) Deduce an expression for the effort required to raise a body of weight W on an inclined plane with usual notations. b) A body on a rough horizontal surface requires a force of 240 N inclined at 25° just to pull it and 280 N just to push it at the same angle. Determine the weight of the body and the coefficient of friction. CR 2. a) Describe with neat sketch the working principle of cone clutch. b) A single plate clutch with both sides of the plate effective, is lined with asbestos having coefficient of friction of 0.3. The allowable pressure on fiction lining is 0.18 MPa. The inside and outside diameters of the friction lining are 90 mm and 300 mm respectively. Assuming uniform pressure, find the safe power that can be transmitted by this clutch at 300 rpm. Muthe an angle of contact of 210°. While one end of band is connected to the lever fulcrum, the other end is connected to the lever. The brake lever is 1000 mm long. Coefficient of friction is 0.33. Find the effort required at the end of lever to stop the rotation of the drum. The drum absorbs 15 kW at 720 rpm. Muthe east sketch discuss the effect of gyroscopic couple on aero-planes. b) A ship engine is propelled by a rotor of mass 5000 kg and a radius of gyration of 0.5 m. The rotor rotates at 2100 rpm clockwise when viewed from the stern. Find the gyroscopic couple or the following conditions: i) The ship rolls with an angular velocity of 0.05 rad /sec clockwise when viewed from stem, at a particular instant. Muthe gases during compression stroke. The work done by the other thruo strokes is negligible. The total fluctuating of speed is limited to 3 % of the mean speed. The work done during suction and expansion strokes may be assumed to be triangular in shape. Find the mass of the fly wheel		C	`ode: 5G552		R-15	
Dynamics of Machinery (Mechanical Engineering) Time: 3 Ha Max. Marks: 70 Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks) Imme: 3 Ha ******** Marks Col UNIT-1 a) Deduce an expression for the effort requires a force of 240 N inclined at 25° just to pull it and 280 N just to push it at the same angle. Determine the weight of the body and the coefficient of friction. 7M Col OR a) Describe with neat sketch the working principle of cone clutch. 7M Col A OR a) Describe with neat sketch the working principle of cone clutch. 7M Col A OR A single plate clutch with both sides of the plate effective, is lined with asbestos having coefficient of friction of 0.3. The allowable pressure on fiction lining is 0.18 MPa. The inside and outside diameters of the friction lining are 90 mm and 300 mm respectively. Assuming uniform pressure, find the safe power that can be transmitted by this clutch at 300 rpm. 7M Col UNIT-1 A A simple band brake of drum diameter 600 mm has a band passing over it with an angle of contact of 210°. While one end of band is connected to the lever fulorum, the other end is connected to the lev				arv 20	21	
(Mechanical Engineering) Time: 3 Harding and the second of the secon				,		
Max. Marks: 70 Time: 3 Ho Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)			· · ·			
UNIT-I a) Deduce an expression for the effort required to raise a body of weight W on an inclined plane with usual notations. 7M Co1 b) A body on a rough horizontal surface requires a force of 240 N inclined at 25° just to pull it and 280 N just to push it at the same angle. Determine the weight of the body and the coefficient of friction. 7M Co1 c) A songle plate clutch with both sides of the plate effective, is lined with asbestos having coefficient of friction of 0.3. The allowable pressure on fiction lining is 0.18 MPa. The inside and outside diameters of the friction lining are 90 mm and 300 mm respectively. Assuming uniform pressure, find the safe power that can be transmitted by this clutch at 300 rpm. 7M Co1 c) UNIT-I 0 7M Co1 3. A simple band brake of drum diameters 600 mm has a band passing over it with an angle of contact of 210°. While one end of band is connected to the lever fulcrum, the other end is connected to the lever at a distance of 400 mm from fulcrum and this end is perpendicular to the lever. The brake lever is 1000 mm long. Coefficient of friction is 0.33. Find the effort required at the end of lever to stop the rotation of the drum. The drum absorbs 15 kW at 720 rpm. M Co2 b) A ship engine is propelled by a rotor of mass 5000 kg and a radius of gyration of 0.5 m. The rotor rotates at 2100 rpm clockwise when viewed from the stern. Find the gyroscopic couple for the following conditions: M Co2 i) The ship steers at a speed of 18 kmph to the left around a curve of 90 m radius. M Co2 ii) Th		Ν	Aax. Marks: 70 Answer all five units by choosing one question from each unit (5 x 14			ours
 a) Deduce an expression for the effort required to raise a body of weight W on an inclined plane with usual notations. b) A body on a rough horizontal surface requires a force of 240 N inclined at 25° just to pull it and 280 N just to push it at the same angle. Determine the weight of the body and the coefficient of friction. Control <li< td=""><td></td><td></td><td></td><td>Marks</td><td>со</td><td>Bloom: Level</td></li<>				Marks	со	Bloom: Level
 an inclined plane with usual notations. A body on a rough horizontal surface requires a force of 240 N inclined at 25° just to pull it and 280 N just to push it at the same angle. Determine the weight of the body and the coefficient of friction. OR a) Describe with neat sketch the working principle of cone clutch. b) A single plate clutch with both sides of the plate effective, is lined with asbestos having coefficient of friction of 0.3. The allowable pressure on fiction lining are 90 mm respectively. Assuming uniform pressure, find the safe power that can be transmitted by this clutch at 300 rpm. A simple band brake of drum diameter 600 mm has a band passing over it with an angle of contact of 210°. While one end of band is connected to the lever fulcrum, the other end is connected to the lever at a distance of 400 mm from fulcrum and this end is perpendicular to the lever. The brake lever is 1000 mm long. Coefficient of friction is 0.33. Find the effort required at the end of lever to stop the rotation of the drum. The drum absorbs 15 kW at 720 rpm. A with neat sketch discuss the effect of gyroscopic couple on aero-planes. b) A ship engine is propelled by a rotor of mass 5000 kg and a radius of gyration of 0.5 m. The rotor rotates at 2100 rpm clockwise when viewed from the stern. Find the gyroscopic couple for the following conditions: i) The ship rolls with an angular velocity of 0.05 rad /sec clockwise when viewed from the stern. Find the gyroscopic couple for the following conditions: i) The ship rolls with an angular velocity of 0.05 rad /sec clockwise when viewed from the gases during expansion stroke is 3 times the work done by the gases during compression stroke. The work done by the gases during compression stroke. The work done by the gases during compression stroke is 3 times the work done by the gases during compression stroke is 3 times the work done by the gases during compression stroke. The work done by t			UNIT–I			
just to pull it and 280 N just to push it at the same angle. Determine the weight of the body and the coefficient of friction. OR 2. a) Describe with neat sketch the working principle of cone clutch. D A single plate clutch with both sides of the plate effective, is lined with asbestos having coefficient of friction of 0.3. The allowable pressure on fiction lining is 0.18 MPa. The inside and outside diameters of the friction lining are 90 mm and 300 mm respectively. Assuming uniform pressure, find the safe power that can be transmitted by this clutch at 300 rpm. M Co1 MIT-II 3. A simple band brake of drum diameter 600 mm has a band passing over it with an angle of contact of 210°. While one end of band is connected to the lever fulcrum, the other end is connected to the lever at a distance of 400 mm from fulcrum and this end is perpendicular to the lever. The brake lever is 1000 mm long. Coefficient of friction is 0.33. Find the effort required at the end of lever to stop the rotation of the drum. The drum absorbs 15 kW at 720 rpm. M Co2 M A a) With neat sketch discuss the effect of gyroscopic couple on aero-planes. b) A ship engine is propelled by a rotor of mass 5000 kg and a radius of gyration of 0.5 m. The rotor rotates at 2100 rpm clockwise when viewed from the stern. Find the gyroscopic couple for the following conditions: i) The ship steers at a speed of 18 kmph to the left around a curve of 90 m radius. ii) The ship rolls with an angular velocity of 0.05 rad /sec clockwise when viewed from the sterd, four stroke I C engine develops 12 kW at 600 rpm. The work done by the gases during expansion stroke. The work done by the other two strokes is negligible. The total fluctuating of speed is limited to 3 % of the mean speed. The work done during suction and expansion strokes may be assumed to be triangular in shape. Find the mass of the fly wheel taking its	1.	a)	· · · · ·	7M	CO1	L2,L3
OR 7M co1 b) A single plate clutch with both sides of the plate effective, is lined with asbestos having coefficient of friction of 0.3. The allowable pressure on fiction lining is 0.18 MPa. The inside and outside diameters of the friction lining are 90 mm and 300 mm respectively. Assuming uniform pressure, find the safe power that can be transmitted by this clutch at 300 rpm. 7M co1 3. A simple band brake of drum diameter 600 mm has a band passing over it with an angle of contact of 210°. While one end of band is connected to the lever fulcrum, the other end is connected to the lever. The brake lever is 1000 mm long. Coefficient of friction is 0.33. Find the effort required at the end of lever to stop the rotation of the drum. The drum absorbs 15 kW at 720 rpm. 14M co2 A a) With neat sketch discuss the effect of gyroscopic couple on aero-planes. 5M co2 b) A ship engine is propelled by a rotor of mass 5000 kg and a radius of gyration of 0.5 m. The rotor rotates at 2100 rpm clockwise when viewed from the stem. Find the gyroscopic couple for the following conditions: 5M co2 i) The ship tolers at a speed of 18 kmph to the left around a curve of 90 m radius. 9M co2 ji) The ship rolls with an angular velocity of 0.05 rad /sec clockwise when viewed from stern, at a particular instant. 9M co2 jii) The ship component stoke. The work done by the gases during expansion stroke is 3 times the work done by the gases during compression stroke. The work done by the gases during compression stroke is 3 times the work done by the gases during compression stroke. The work done by the other two strokes is negligible. The total fluctuating of speed is limited to 3		b)	just to pull it and 280 N just to push it at the same angle. Determine the			
 a) Describe with neat sketch the working principle of cone clutch. b) A single plate clutch with both sides of the plate effective, is lined with asbestos having coefficient of friction of 0.3. The allowable pressure on fiction lining is 0.18 MPa. The inside and outside diameters of the friction lining are 90 mm and 300 mm respectively. Assuming uniform pressure, find the safe power that can be transmitted by this clutch at 300 rpm. 7M co1 7M co2 7M co2 7M co2 7M co3 <l< td=""><td></td><td></td><td>weight of the body and the coefficient of friction.</td><td>7M</td><td>CO1</td><td>L2,L3</td></l<>			weight of the body and the coefficient of friction.	7M	CO1	L2,L3
 b) A single plate clutch with both sides of the plate effective, is lined with asbestos having coefficient of friction of 0.3. The allowable pressure on fiction lining is 0.18 MPa. The inside and outside diameters of the friction lining are 90 mm and 300 mm respectively. Assuming uniform pressure, find the safe power that can be transmitted by this clutch at 300 rpm. 7M co1 3. A simple band brake of drum diameter 600 mm has a band passing over it with an angle of contact of 210°. While one end of band is connected to the lever fulcrum, the other end is connected to the lever at a distance of 400 mm from fulcrum and this end is perpendicular to the lever. The brake lever is 1000 mm long. Coefficient of friction is 0.33. Find the effort required at the end of lever to stop the rotation of the drum. The drum absorbs 15 kW at 720 rpm. 4. a) With neat sketch discuss the effect of gyroscopic couple on aero-planes. b) A ship engine is propelled by a rotor of mass 5000 kg and a radius of gyration of 0.5 m. The rotor rotates at 2100 rpm clockwise when viewed from the stern. Find the gyroscopic couple for the following conditions: i) The ship steers at a speed of 18 kmph to the left around a curve of 90 m radius. ii) The ship rolls with an angular velocity of 0.05 rad /sec clockwise when viewed from stern, at a particular instant. 9M co2 5M co2 			OR			
 asbestos having coefficient of friction of 0.3. The allowable pressure on fiction lining is 0.18 MPa. The inside and outside diameters of the friction lining are 90 mm and 300 mm respectively. Assuming uniform pressure, find the safe power that can be transmitted by this clutch at 300 rpm. UNIT-II A simple band brake of drum diameter 600 mm has a band passing over it with an angle of contact of 210°. While one end of band is connected to the lever fulcrum, the other end is connected to the lever at a distance of 400 mm from fulcrum and this end is perpendicular to the lever. The brake lever is 1000 mm long. Coefficient of friction is 0.33. Find the effort required at the end of lever to stop the rotation of the drum. The drum absorbs 15 kW at 720 rpm. A ship engine is propelled by a rotor of mass 5000 kg and a radius of gyration of 0.5 m. The rotor rotates at 2100 rpm clockwise when viewed from the stern. Find the gyroscopic couple for the following conditions: i) The ship rolls with an angular velocity of 0.05 rad /sec clockwise when viewed from stern, at a particular instant. 9M co2 9M co2 10NIT-II A single cylinder, four stroke I C engine develops 12 kW at 600 rpm. The work done by the gases during expansion stroke is 3 times the work done by the gases during compression stroke. The work done by the other two strokes is negligible. The total fluctuating of speed is limited to 3 % of the mean speed. The work done during suction and expansion strokes may be assumed to be triangular in shape. Find the mass of the fly wheel taking its 	2.	a)	Describe with neat sketch the working principle of cone clutch.	7M	CO1	L2,L3
 A simple band brake of drum diameter 600 mm has a band passing over it with an angle of contact of 210°. While one end of band is connected to the lever fulcrum, the other end is connected to the lever at a distance of 400 mm from fulcrum and this end is perpendicular to the lever. The brake lever is 1000 mm long. Coefficient of friction is 0.33. Find the effort required at the end of lever to stop the rotation of the drum. The drum absorbs 15 kW at 720 rpm. 4. a) With neat sketch discuss the effect of gyroscopic couple on aero-planes. b) A ship engine is propelled by a rotor of mass 5000 kg and a radius of gyration of 0.5 m. The rotor rotates at 2100 rpm clockwise when viewed from the stern. Find the gyroscopic couple for the following conditions: i) The ship steers at a speed of 18 kmph to the left around a curve of 90 m radius. ii) The ship rolls with an angular velocity of 0.05 rad /sec clockwise when viewed from stern, at a particular instant. 9M co2 		b)	asbestos having coefficient of friction of 0.3. The allowable pressure on fiction lining is 0.18 MPa. The inside and outside diameters of the friction lining are 90 mm and 300 mm respectively. Assuming uniform pressure, find	7M	CO1	L2,L3
 an angle of contact of 210°. While one end of band is connected to the lever fulcrum, the other end is connected to the lever at a distance of 400 mm from fulcrum and this end is perpendicular to the lever. The brake lever is 1000 mm long. Coefficient of friction is 0.33. Find the effort required at the end of lever to stop the rotation of the drum. The drum absorbs 15 kW at 720 rpm. 4. a) With neat sketch discuss the effect of gyroscopic couple on aero-planes. b) A ship engine is propelled by a rotor of mass 5000 kg and a radius of gyration of 0.5 m. The rotor rotates at 2100 rpm clockwise when viewed from the stern. Find the gyroscopic couple for the following conditions: i) The ship steers at a speed of 18 kmph to the left around a curve of 90 m radius. ii) The ship rolls with an angular velocity of 0.05 rad /sec clockwise when viewed from stern, at a particular instant. 9M co2 UNIT-III 5. A single cylinder, four stroke I C engine develops 12 kW at 600 rpm. The work done by the gases during expansion stroke is 3 times the work done by the gases during expansion stroke is 3 times the work done by the gases during expansion stroke is 3 times the work done by the mean speed. The work done during suction and expansion strokes may be assumed to be triangular in shape. Find the mass of the fly wheel taking its 			UNIT–II			
 OR 4. a) With neat sketch discuss the effect of gyroscopic couple on aero-planes. b) A ship engine is propelled by a rotor of mass 5000 kg and a radius of gyration of 0.5 m. The rotor rotates at 2100 rpm clockwise when viewed from the stern. Find the gyroscopic couple for the following conditions: i) The ship steers at a speed of 18 kmph to the left around a curve of 90 m radius. ii) The ship rolls with an angular velocity of 0.05 rad /sec clockwise when viewed from stern, at a particular instant. 5. A single cylinder, four stroke I C engine develops 12 kW at 600 rpm. The work done by the gases during expansion stroke is 3 times the work done by the gases during compression stroke. The work done by the other two strokes is negligible. The total fluctuating of speed is limited to 3 % of the mean speed. The work done during suction and expansion strokes may be assumed to be triangular in shape. Find the mass of the fly wheel taking its 	3.		an angle of contact of 210 [°] . While one end of band is connected to the lever fulcrum, the other end is connected to the lever at a distance of 400 mm from fulcrum and this end is perpendicular to the lever. The brake lever is 1000 mm long. Coefficient of friction is 0.33. Find the effort required at the end of lever to	4 4 8 4		
 4. a) With neat sketch discuss the effect of gyroscopic couple on aero-planes. b) A ship engine is propelled by a rotor of mass 5000 kg and a radius of gyration of 0.5 m. The rotor rotates at 2100 rpm clockwise when viewed from the stern. Find the gyroscopic couple for the following conditions: i) The ship steers at a speed of 18 kmph to the left around a curve of 90 m radius. ii) The ship rolls with an angular velocity of 0.05 rad /sec clockwise when viewed from stern, at a particular instant. 5. A single cylinder, four stroke I C engine develops 12 kW at 600 rpm. The work done by the gases during expansion stroke is 3 times the work done by the gases during expansion stroke is 3 times the work done by the mean speed. The work done during suction and expansion strokes may be assumed to be triangular in shape. Find the mass of the fly wheel taking its 				1411	002	L3,L4
 b) A ship engine is propelled by a rotor of mass 5000 kg and a radius of gyration of 0.5 m. The rotor rotates at 2100 rpm clockwise when viewed from the stern. Find the gyroscopic couple for the following conditions: i) The ship steers at a speed of 18 kmph to the left around a curve of 90 m radius. ii) The ship rolls with an angular velocity of 0.05 rad /sec clockwise when viewed from stern, at a particular instant. 5. A single cylinder, four stroke I C engine develops 12 kW at 600 rpm. The work done by the gases during expansion stroke is 3 times the work done by the gases during compression stroke. The work done by the other two strokes is negligible. The total fluctuating of speed is limited to 3 % of the mean speed. The work done during suction and expansion strokes may be assumed to be triangular in shape. Find the mass of the fly wheel taking its 	1	2)		514	<u> </u>	
 viewed from stern, at a particular instant. UNIT-III 5. A single cylinder, four stroke I C engine develops 12 kW at 600 rpm. The work done by the gases during expansion stroke is 3 times the work done by the gases during compression stroke. The work done by the other two strokes is negligible. The total fluctuating of speed is limited to 3 % of the mean speed. The work done during suction and expansion strokes may be assumed to be triangular in shape. Find the mass of the fly wheel taking its 	+.		A ship engine is propelled by a rotor of mass 5000 kg and a radius of gyration of 0.5 m. The rotor rotates at 2100 rpm clockwise when viewed from the stern. Find the gyroscopic couple for the following conditions:i) The ship steers at a speed of 18 kmph to the left around a curve of 90 m radius.	JIVI	002	L
5. A single cylinder, four stroke I C engine develops 12 kW at 600 rpm. The work done by the gases during expansion stroke is 3 times the work done by the gases during compression stroke. The work done by the other two strokes is negligible. The total fluctuating of speed is limited to 3 % of the mean speed. The work done during suction and expansion strokes may be assumed to be triangular in shape. Find the mass of the fly wheel taking its				9M	CO2	L3,L4 & L
work done by the gases during expansion stroke is 3 times the work done by the gases during compression stroke. The work done by the other two strokes is negligible. The total fluctuating of speed is limited to 3 % of the mean speed. The work done during suction and expansion strokes may be assumed to be triangular in shape. Find the mass of the fly wheel taking its						
	5.		work done by the gases during expansion stroke is 3 times the work done by the gases during compression stroke. The work done by the other two strokes is negligible. The total fluctuating of speed is limited to 3 % of the mean speed. The work done during suction and expansion strokes may be			
			radius of gyration as 0.5 m	14M	CO3	L3,L

6.	a)	What do you understand by terms:			
		i) Sensitiveness ii) Hunting and iii) Isochronism	ЗM	CO3	L2
	B)	The arms of a porter governor are each 250 mm long and pivoted on the governor axis. The mass of each ball is 5 kg and the mass of central sleeve is 30 kg. The radius of rotation of the governor balls is 150 mm when sleeve begins to rise and reaches a value of 200 mm at maximum speed. Determine the speed range of the governor.	11M	CO3	L2, L3 & L4
				005	& L4
7.		A rotating shaft carries 4 masses A, B, C and D at radii 100, 125, 200 and 150 mm respectively. The planes in which these masses revolve are spaced at 600 mm apart. The masses at B, C and D are 10, 5 and 4 kg respectively. Find the required mass at A and the angular positions of 4 masses to keep the shaft in balance.	14M	CO4	L2. L3 & L4
		OR			
8.		The crank and connecting rod of a 4 cylinder in line engine running at 1800 rpm, are 50 mm and 250 mm respectively and the cylinders are placed at 150 mm apart. If the cylinders are numbered 1 to 4 in sequence from one end, then the cranks appear at intervals of 90° in the end view in the order 1 $- 4 - 2 - 3$. The reciprocating masses corresponding to each cylinder are 1.5 kg. Determine: i) Unbalanced primary and secondary forces if any and ii) Unbalanced primary and secondary forces if any and	1 4 1 4		L2. L3
		ii) Unbalanced primary couples with reference to central plane of engine.	14M	CO4	& L4
9.	a)	UNIT-V A steel shaft 25 mm diameter, 1.5 m long carries a disc of mass 5 kg at its center and another mass of 2 kg at 0.5 m from left support. Find the whirling speed if $E = 200$ GPa.	6M	CO5	L3,L4
	b)	A cantilever shaft 50 mm diameter and 300 mm long has a disc of mass 100kg at its free end. The Young's modulus for the shaft material is 200GN/m ² . Determine the frequency of longitudinal and transverse vibrations of the shaft	8M	CO5	L2,L3 & L4
		OR			
10.	a)	Deduce the expressions for natural frequency of vibration of a spring mass			
	-	system without considering the mass of spring and with considering mass of the spring.	14M	CO5	L2,L3 & L4

	Н	all Tic	ket Nu	umber	:								[
	Code: 7G556							R-17							
				emes	ter R	eaul	ar & Si	Jople	ment	arv Ex	amir	ation	s February	/ 2021	
		2110		011100		-	ngine			•				202	
							Mecho	-		•					
	Ма		arks: 70	-		-			-	-	-		Time:		irs
		Ansv	ver all	five ur	nits by	choc	osing or	ne que		om ec	ich un	it (5 x	14 = 70 Mar	ks)	
								****	ጥ ጥ ጥ				Marks	со	Blo
								UT 1					IVIAINS	CO	Le
1		1		<i></i>				NIT—I			45.	0	0.1 ^N		
1.							ange of nental d						01 ^{D.} 14M	004	
		1107	=101, 11	00=20	i anu n	unuan		OR		shart [-	5.50	·1	1 14111	CO1	
0	a)	Diag	uss abo	1			Ĺ	Л							
2.	a)		ximum		Limite	ii) N/	linimum	Motal	Limite				8M	CO1	
	b)						iges ba			and nu	rnaaa	Evoloi		COT	
	D)		erence		11510116	a yau	iyes ba		type a	anu pu	ipose,	схріаі	6M	CO1	
		interi	0101100					IIT-II					0.11	001	
3.	a)	Desc	ribe the	metho	d of us	ina sir	ne bar fo		 urina ta	per and	ale of p	lua aau	aes. 7M	CO2	
0.	ير b)					-	llimator		-	-	5 I-		7M		
	0)	Слри		printerp				DR						002	
4.		Illust	ate NP	9 flatn	ess int	erfero							14M	CO2	
т.		must		Linatin	000 111	chere		IT-III					1 - 1 1 1	002	
5.		l ist t	vnes of	f surfa	ce rou	ahnes	s meas		nt meth	ods ar	nd disc	uss an	vone		
0.						•	s indust						14M	CO3	
								DR							
6.	a)	Evalu	late sui	rface fo	or CLA	and F	RMS val	ue usin	g the m	easure	ement f	rom a d	datum		
	,						length o		•						
			35	25	40	22	35	18	42	25	30	21			
			36	18	42	25	30	21	35	18	25	28	7M	CO3	
	b)	Shov	/ the IS	:3073	of 196	7 – to	charact	eristics	of surf	ace tex	kture.		7M	CO3	
							UN	IT–IV							
7.						sas	suitable	metho	d of in	spectio	on of p	orofile :			
		threa	d with r	neat sk	etch.								14M	CO4	
								DR							
8.		Expla	ain the I	princip	le of pi	neuma	atic com	parato	r using	a diag	ram.		14M	CO4	
							UN	IT–V							
9.	a)	Discu	iss ass	ignable	e and r	non-as	ssignabl	e caus	es.				7M	CO5	
	b)	Gene	erate da	ata to u	ise a d	ouble	samplir						7M	CO5	
							C	DR							
0.			ss the	import	ance c	of Coc	ordinatin	g Mea	suring	Machir	ies in i	industry	∕, List		
-			of CMN	-									14M	CO5	

	На	Il Ticket Number :			I
l	Col	de: 5G555	R-15		
		III B.Tech. I Semester Supplementary Examinations February 20	21		
		Heat Transfer			
		(Mechanical Engineering)	<u></u>		
	M	ax. Marks: 70 Answer all five units by choosing one question from each unit (5 x 14 = 70 M	e: 3 Hc Iarks)	ours	
		******			Blooms
		UNIT–I	Marks	со	Level
1.		Derive the general heat conduction equation in cylindrical coordinate system.			
		Simplify the obtained equation to one dimensional conduction equation.	14M	1	3
		OR			
2.	,	What is thermal diffusivity? Explain its importance in heat conduction problems.	6M	1	2
	b)	Explain the boundary and initial conditions?	8M	1	2
3.	a)	UNIT-II Derive the temperature distribution equation and heat transfer rate equation in a			
0.	u)	plane wall.	8M	2	3
	b)	A wall of 0.5m thickness is to be constructed from a material which has an			
		average thermal conductivity of 1.4 W/mK. The wall is to be insulated with a material having an average thermal conductivity of 0.35 W/mK so that the heat			
		loss per square meter will not exceed 1450W. Assuming that the inner and outer			
		surface temperatures are 1200°C and 15°C respectively, Calculate the thickness		_	_
		of insulation required.	6M	2	3
Л	2)	OR Classify the Fine Define Effectiveness and efficiency of Fin	6M	2	2
4.	a) b)	Classify the Fins. Define Effectiveness and efficiency of Fin. A motor body is 360 mm in diameter (outside) and 240 mm long. Its surface	OIVI	Z	2
	0)	temperature should not exceed 55°C when dissipating 340W. Longitudinal fins of			
		15 mm thickness and 40 mm height are proposed. The convection coefficient is			
		40W/m2K. Determine the number of fins required. Atmospheric temperature is 30° C. K = 40 W/m K. Assume no heat loss from the tip of the Fin.	8M	2	3
			om	-	Ũ
5.	a)	Find the relation between Nuselt, Prandtl and Grashof number using			
		dimensional analysis in Natural convection.	7M	3	3
	b)	A vertical pipe of 20cm outer diamer at surface temperature of 100°C in a room where the air is 20°C. The pipe is 3m long. What is the rate of heat loss per			
		meter length of pipe?	7M	3	3
		OR			
6.	a)	Compare the variation of velocity, temperature and local heat transfer coefficient			
		along a vertical plate for the pate under natural convection and forced convection	6M	3	2
	b)	A 30 cm long glass plate is hung vertically in the air at 27 °C while its	om	Ũ	-
	,	temperature is maintained at 77 °C. Calculate the boundary layer thickness at			
		the trailing edge of the plate. If a similar plate is place in a wind tunnel and air is blown over it at a velocity of 4 m/s , estimate the boundary layer thickness at its			
		blown over it at a velocity of 4 m/s, estimate the boundary layer thickness at its trailing edge?	8M	3	3
			Page		

		Cod	de: 5G	555	
		UNIT–IV			
7.	a)	Distinguish between filmwise and dropwise condensation .	6M	4	2
	b)	Dry saturated steam at a pressure of 2.45 bar condenses on the surface of a vertical tube of height 1 m. The tube surface temperature is kept at 117 °C . Estimate the thickness of the condensate film and the local heat transfer coefficient at a distance of 0.2 m from the upper end of the tube.	8M	4	3
		OR			
8.	a)	a) Define the following:			
		i) Irradiation, Emissivity and radiation shape factor.	7M	4	1
	b)	b) Two parallel black plates $0.5m \times 1.0m$ are separated by $0.5m$ distance. One plate is at $1100^{\circ}C$ and the other at $600^{\circ}C$. Compute the net radiant heat			
		exchange between the two plates.	7M	4	3
•	、		014	_	0
9.	a)	Classify heat exchangers and list various applications of it.	6M	5	2
	b)	A refrigerator is designed to cool 250 kg/h of hot liquid of specific heat 3350 J/kg K at 120° C using a parallel flow arrangement . 1000 kg/h of cooling water is available for cooling purpose at a temperature of 10°C. If the overall heat transfer coefficient is 1160 W/m ² K and the surface area of heat exchanger is 0.25m ² , calculate the outlet temperature of the coolest liquid and water and also			
		the effectiveness of the heat exchanger.	8M	5	3
		OR			
10.	a)	Derive the expression for LMTD for parallel flow heat exchangers.	8M	5	3
	b)	Hot oil with a capacity rate of 2500 W/K flows through a double pipe heat exchanger. It enters at 360 °C and leaves at 300 °C. Cold fluid enters at 30 °C and leaves at 200 °C. If the overall heat transfer coefficient is 800 W/m2K, determine the heat exchanger area required for i) parallel flow and ii) Counter			
		flow.	6M	5	3

		Hall Ticket Number :			
	(Code: 5G553	R-15		
		III B.Tech. I Semester Supplementary Examinations February 20	21		
		Machine Tools			
		(Mechanical Engineering)			
		Time Answer all five units by choosing one question from each unit (5 x 14 = 70 N	e: 3 H Varks V	ours	

			Marks	СО	Blooms Level
		UNIT–I			
1.	a)	Show schematically Merchant's force circle in orthogonal cutting and explain in detail about the each forces encountered in the force circle.	7M	CO1	L1
	b)	Describe important desirable properties of a cutting tool.	7M	CO1	L2
	0)	OR			
2.	a)	What are throw away carbide tips? What are their advantages and basic requirements?	7M	CO1	L1
	b)	List various types of chip breakers and explore their significance.	7M	CO1	L1
		UNIT–I			
3.	a)	With a neat diagram sketch an engine lathe, mark it's parts and describe them briefly.	7M	CO2	L4
	b)	What are the significant features of a turret lathe as compared to an engine lathe?	7M	CO2	L1
4	-)	OR	714	000	
4.	a) b)	Why are engine lathes called by that name? List various specifications of lathe. Name any four operations which can be performed on a lathe and explain them briefly.	7M 7M	CO2 CO2	L2 L1
	D)	UNIT-I	7 111	002	LI
5.	a)	Explain the working of a hydraulic quick return mechanism of a shaper.	7M	CO3	L2
	b)	List various operations performed on a Planner.	7M	CO3	L4
		OR			
6.	a)	Sketch and briefly explain any three operations that can be performed on a radial drilling machine.	7M	CO3	L4
	b)	Sketch and briefly explain any four operations that can be performed on an Universal	7M	CO3	L2
		milling machine.	7 101	000	LZ
_	、				
7.	a)	How are the abrasives selected for a grinding operation? Explain the reasons for their selection.	7M	CO4	L3
	b)	"Grinding is a mixture of different cutting processes". Justify it.	7M	CO4	L5
		OR			
8.	a)	How broaching operation is done on a horizontal pull type broaching machine?	7M	CO4	L3
	b)	Explain the basic principle of metal removal in grinding.	7M	CO4	L2
•	、	UNIT-I			
9.	a)	Define Lapping operation and discuss the advantages and applications of Lapping operation.	7M	CO5	L1
	b)	Sketch and describe the honing process along with its advantages and applications.	7M	CO5	L4
		OR			
10.	a)	Define a jig and discuss any one types of drilling jigs along with its applications.	7M	CO5	L3
	b)	Explain the essential characteristics applications of jigs and fixtures.	7M	CO5	L2
		<u>ጥ ጥ ጥ ጥ</u>			

H	all Ticket Number :												
Сс	ode: 5GA51									-	R-15		
	III B.Tech. I Se	emest	er Su	nelqq	nento	ary Ex	kamir	natio	ons F	ebru	ary 2021		
				onon		•					•		
		. <u>.</u>		ommor						,	-		
M	ax. Marks: 70		,			·		,			Time: 3 Ho	ours	
	Answer all five uni	ts by c	choos	ing one	e ques	stion fr	om eo	ach u	unit (5 x 14	= 70 Marks)		
					*****	***							
											Marks	со	Bloon Leve
				UN	IT–I								
[Define Managerial Ecc	onomic	s and	Discuss	s its na	ature a	nd sco	pe.					
				0	R								
E	Explain any two princip			gerial E	conon	nics.							
	(a) Opportunity Cos		•										
	(b) Risk and Uncerta	•	•	е									
	(c) Equi-Marginal P	rincipie	•										
-			- C I		IT–II								
[Discuss the Cost-Outp	ut Rela	ationsi	וף וח sh O		n and I	ong ru	n.					
E	Explain the following of	lomon	d foro			de							
L	(a) Consumers surv			Jasting	neuro	143							
	(b) Regression Meth	•											
				UNI	T–III								
[Discuss the problems a	nd rem	edies	of Public	c Secto	or Busi	ness O	rgani	satio	ns.			
				0	R								
E	Explain the following p	ricing r	metho	ds									
	(a) Market Skimmi	-	cing										
	(b) Peak Load Pric	ing				_							
				L	T–IV								
	Discuss double entry					he pro	cedure	e for	prep	aring b	alance		
5	heet of the firm at the	end o	i iinan	ciai yea O									
ŀ	company is consider	ina tw	o muti			nroie	ts Ro	th ro	auire	an initi	al		
	nvestment of ₹ 10,000												
	company is 10%. The												
	ompany is 10 %. The	estima					1 1						
	Year	1	2		3		4		5				

You are required to calculate Net Present Value and suggest which project should be accepted. The PV factors at 10% from first year to fifth year are 0.909, 0.826, 0.751, 0.683 and 0.621 respectively.

6000

UNIT–V

5400

4000

5000

9. Explain the meaning of financial ratio and discuss its significance in analysing the financial performance of a firm.

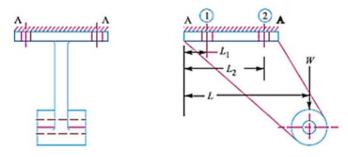
OR

- 10. From the following information, you are required to prepare a Balance Sheet.
 - (i) Current Ratio 1.75
 - (ii) Liquid Ratio 1.25

Project B

- (iii) Stock Turnover Ratio (Cost of sales/closing stock) 9
- (iv) Gross Profit Ratio 25 per cent
- (v) Debt collection period 1.5 months
- (vi) Reserves and surplus to capital 0.2

5000


- (vii) Turnover to fixed assets 1.2
- (viii) Capital gearing ratio 0.6
- (ix) Fixed Assets to net worth 1.25
- (x) Sales for the year ₹ 12,00,000

	Ha	all Ticket Number :			_
		le: 5G554	R-1	5	
		III B.Tech. I Semester Supplementary Examinations February 2	2021		_
		Design of Machine Elements-I			
	Ma	(Mechanical Engineering) K. Marks: 70	me: 3	Hour	c
	MU	Answer all five units by choosing one question from each unit (5 x 14 = 70			5
		*****			Blooms
			Marks	со	Level
	-)	UNIT-I			
1.	a)	Discuss, What are the factors to be considered for the selection of materials for the design of machine elements?	7M	CO1	L2
	b)	Discuss the BIS method of designation of steels with an example.	7M		L2
	,	OR			
2.	a)	What are preferred numbers? Find out the numbers of R5 basic series from 1			
		to 10.	7M	CO1	L1,L2
	b)	A shaft, as shown in Fig.1, is subjected to a bending load of 3 kN, pure torque of 1000 N-m and an axial pulling force of 15 kN. Calculate the stresses at A and B.			
		3kN			
		$ \begin{array}{c} A \\50 \text{ mm Dia} \\ \hline B \\ \hline 250 \text{ mm} \\ \hline \end{array} $ $ \begin{array}{c} 15kN \\ 1000 \text{ N-m} \\ \hline \end{array} $			
		Fig.1	7M	CO1	L6
2	2)	UNIT-II			
3.	a)	What is stress concentration factor? What are the methods of reducing stress concentration?	7M	CO2	L1,L2
	b)	A forged steel bar of 50mm in diameter is subjected to a reversed bending stress of 250 N/mm ² . The bar is made up of steel 40C8 (Sut = 600 N/mm ²). Calculate the life of bar for a reliability of 90%. Assume Ka = 0.44, Kb = 0.85.	7M	CO2	L6
		OR			
4.	a)	What is endurance limit? What are the factors that affect the endurance limit of a machine part?	4M	CO2	L1,L2
	b)	A simply supported beam has a concentrated load at the centre which fluctuates from a value of P to 4 P. The span of the beam is 500 mm and its cross-section is circular with a diameter of 60 mm. Taking for the beam material an ultimate stress of 700 MPa, a yield stress of 500 MPa, endurance limit of 330 MPa for reversed bending, and a factor of safety of 1.3, calculate the maximum value of P. Take a			
		size factor of 0.85 and a surface finish factor of 0.9	10M	CO2	L6

UNIT-III

5. A bracket, as shown in figure below, supports a load of 30 kN. Determine the size of bolts, if the maximum allowable tensile stress in the bolt material is 60 MPa. The distances are: L1 = 80 mm, L2 = 250 mm and L = 500 mm.

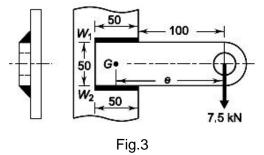
14M co3 L2

10M

CO3

CO4

L6


L6

L6

L6

OR

- 6. a) What are the advantages and disadvantages of welded joints? 4M co3 L1, L2
 - b) A welded connection, as shown in Fig.3 is subjected to an eccentric force of 7.5 kN. Determine the size of the welds if the permissible shear stress for the weld is 100 N/mm². Assume static conditions.

- 7. a) What is a knuckle joint? Give practical examples of knuckle joint.
 b) Design the rectangular key for a shaft of 50 mm diameter. The shearing and
 - crushing stresses for the key material are 42 MPa and 70 MPa. 10M CO4

OR

Design and draw a cotter joint to support a load varying from 30 kN in Compression to 30 kN in tension. The material used is carbon steel for which the following allowable stresses may be used. The load is applied statically. Tensile stress = compressive stress = 50 MPa; shear stress = 35 MPa and crushing stress= 90 MPa.

UNIT–V

- 9. a) What are the different criteria of designing a shaft?
 b) Find the diameter of a solid shaft to transmit 25 kW at 300 rpm. Take the maximum allowable shear stress as 50 N/mm². If a hollow shaft is to be used in place of the solid shaft, find the inside and outside diameter when the ratio of inside to outside diameter is 0.6.
 4M CO5 L1,L2
 4M CO5 L1,L2
 - OR
- Design a cast iron protective flange coupling to connect two shafts in order to transmit 7.5 kW at 720 r.p.m. The following permissible stresses may be used: Permissible shear stress for shaft, bolt and key material = 33 MPa; Permissible crushing stress for bolt and key material = 60 MPa; Permissible shear stress for the cast iron = 15 MPa

CO5