L		II Ticket Number : R-17												
	Coc	Je: 7G554 Ill B.Tech. I Semester Supplementary Examinations June 2022												
		Machine Tools												
		(Mechanical Engineering)												
	Mc	ax. Marks: 70 Time: 3 Hours												
		Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)												
1.	a)	Explain importance of cutting fluids on tool life.												
	b)	Discuss the various types of chips produced during metal machining.												
2.	a)	Define the terms shear plane and shear zone												
	b)	Explain Orthogonal cutting with a neat sketch												
		UNIT–II												
3.	a)													
	b)	having a length of 300mm, Larger diameter 45 mm and smaller diameter 30mm Explain principle features of single spindle automatic lathe												
	5)	OR												
4.	a)	Differentiate between Turret and Capstan lathes												
	b)	· · · · · · · · · · · · · · · · · · ·												
		UNIT-III												
5.		Explain the working principle and types of operations to be performed on slotter.												
		OR												
6.	a)	Describe about jig boring machine with neat sketch?												
	b)	State and explain methods of indexing in milling machine.												
		UNIT-IV												
7.	a)	Write short notes on												
		i. Dressing ii. Truing												
	b)	Explain static balancing of grinding wheel												
	2)	OR												
8.	a)													
	b)													
		UNIT-V												
9.	a)	Explain principles of design of jigs and fixtures												
	b)	Compare honing and lapping.												
		OR												
0.	a)	Explain 3-2-1 principle with an example.												
	b)	Explain any two lapping operations												

Page **1** of **1**

	Hal	I Ticket Number :													
L	Cod	le: 5G552]		.]]	R-15	
			l Se	mes	ter S	Supi	oler	nen	tary	Exa	min	atio	ns Ju	ne 2022	
III B.Tech. I Semester Supplementary Examinations June 2022 Dynamics of Machinery															
(Mechanical Engineering)															
Max. Marks: 70 Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)															

					ſ	U	NIT–	1							Marks
1.	a)	Explain the working of single plate clutch with sketch.												7M	
	b)	A single plate clutch, with both sides effective, has outer and inner diameters 300 mm and 200 mm respectively. The maximum intensity of pressure at any point in the contact surface is not to exceed 0.1 N/mm ² . If the coefficient of friction is 0.3, determine the power transmitted by a clutch at a speed 2500 r.p.m												act	
	OR														
2.		An effort of 1500 N is required to just move a certain body up an inclined plane of angle 12°, force acting parallel to the plane. If the angle of inclination is increased to 15°, then the effort required is 1720 N. Find the weight of the body and the coefficient of friction.													
3.	a)	Describe the types	s of b	orake	es [0	NI I —I								6M
	b)											. A nly			
it comes to rest? The pressure applied on the brake												l and	l μ = 0	.05.	8M
4.	a)	Describe the construction and operation of a epicyclic-train dynamometer.											8M		
	b)	A torsion dynamometer is fitted to a propeller shaft of a marine engine. It is found that the shaft twists 2° in a length of 20 meters at 120 r.p.m. If the shaft is hollow with 400mm external diameter and 300 mm internal diameter, find the power of the engine. Take modulus of rigidity for the shaft material as 80 GPa												nm	
						UN	IIT–I	II							
5.	a)	Draw the turning n			Ū			•	•				•	•	7M
	b)	A horizontal cross compound steam engine develops 300 k W at 90 r.p coefficient of fluctuation of energy as found from the turning moment diagram 0.1 and the fluctuation of speed is to be kept within ± 0.5% of the mean speed. weight of the flywheel required, if the radius of gyration is 2 meters.										diagram is to	be		
-				_			OR		_				_		
6.		Explain the followi	ng: a	a. Se	nsitiv				chror	nism,	and	c. Hu	inting.		14M
7.		Explain The Balar Plane.	ncing) of a	a Sin				/lass	By ⊺	Гwo	Mass	ses Ro	otating in Differe	ent 14M
8	a)	A, B, C and D are	four	mac	200	corri	OR od by	/ a ro	ntatir	na ch	oft of	tradi	i 100	125, 200 and 1	50
0.	u)	mm respectively. The mass of B, C a and the relative an balance	The p and [plane D are	es in 10 k	whic ‹g, 5	h the kg, a	e mas and 4	sses I kg	revol respe	ve a ective	re sp ely. F	aced (600 mm apart a e required mass	nd s A
						U	VIT-V	V							
9.		A cantilever shaft 50 mm diameter and 300 mm long has a disc of mass 100 kg at its free end. The Young's modulus for the shaft material is 200 GN/m ² . Determine the frequency of longitudinal and transverse vibrations of the shaft. OR													
10	a)	Develop an expres	ssion	n for I	Natu	ral F		ency	of F	r <u>ee</u> T	orsic	nal \	/ibrati	ons.	7M
	b)	A shaft of 100 mm carries a disc of m	n diai	mete	r and	d 1 m	neter	long	has	one	of its	end	fixed	and the other e	nd

carries a disc of mass 500 kg at a radius of gyration of 450 mm. The modulus of rigidity for the shaft material is 80 GN/m². Determine the frequency of torsional vibrations.

7M