Hall Ticket Number :						
Code: 5G353						R-15

III B.Tech. I Semester Supplementary Examinations February 2021

Analog & Digital Integrated Circuits Applications

(Electronics and Communication Engineering)

Max. Marks: 70 Time: 3 Hours Answer all five units by choosing one question from each unit ($5 \times 14 = 70 \text{ Marks}$)

		Marks	со	Blooms Level
	UNIT-I			
1.	Draw the circuit of inverting and non-inverting amplifiers using Op-Amp and derive an expression for their gain.	14M	004	L3
	OR	14111	CO1	LS
0 -)				
2. a)	An IC op-amp 741 used as an inverting amplifier with a gain of 100. The voltage gain Vs frequency characteristic is flat up to 12 kHz. Find the maximum peak to peak input signal that can be feed without causing any distortion to the output.	8M	CO1	L3
b)		Olvi	COT	LO
b)	Draw and explain the output waveform of the ideal inverter circuit when the input is square wave	6M	CO1	L1
	UNIT-II	Olvi	COT	
3.				
٥.	Explain the Astable and Monostable Multivibrator using Op-Amp with a neat diagram.	14M	CO1	L2
	OR	1 1101		
1 0)		01/1	CO1	1.0
4. a)	Discuss in detail about successive approximation type DAC.	M8	CO1	L2
b)	What are the applications of PLL.	6M	CO1	L2
- \	UNIT-III	014		
5. a)	Discuss the CMOS Dynamic Electrical Behavior.	8M	CO2	L3
b)	Give some advantages and disadvantages of above.	6M	CO2	L2
	OR			
6.	Show the Operation of Universal Gate with ECL technology.	14M	CO2	L3
	UNIT-IV			
7.	Define decoder and explain with neat diagram the functionality of 3 to 8 decoder also write the VHDL program for standard 74X138.	14M	CO2	L2
	OR			
8.	Discuss the Entities, Architectures and Configurations of VHDL design with an example.	14M	CO3	L3
	UNIT-V			
9.	Write a VHDL entity and architecture for a 3-bit synchronous counter using flip flops.	14M	CO3	L2
	OR			
10.	Explain the operation of SR-flip flop and T-flip-flop with VHDL code. *****	14M	CO3	L2

Hall Ticket Number :						R-15
Code: 5G354						

III B.Tech. I Semester Supplementary Examinations February 2021

Antennas and Wave Propagation

		Aniennas ana wave riopaganon		
		(Electronics and Communication Engineering)		
	N	Nax. Marks: 70 Answer all five units by choosing one question from each unit (5 x 14 = 70 M ***********************************	e: 3 Ho arks)	ours
			Marks	СО
		UNIT-I		
1.	a)	Define and explain the following		
	·	i) Directivity ii) Beam width iii) Radiation resistance.	6M	
	b)	Develop the relation between the effective area and directivity D of an antenna		
		operating at a wavelength of .	8M	
		OR		
2.	a)	Derive the expression for radiation resistance of alternating current element.	10M	
	b)	An antenna has Rr =73 , RL=2 . Compute its efficiency	4M	
		UNIT-II		
3.	a)	Define uniform linear array and derive the expression for array factor of n-element		
		linear array.	8M	
	b)	Illustrate the need of Antenna Array?	6M	
		OR		
4.	a)	Explain the operation of Binomial arrays.	7M	
	b)	A linear broadside array consists of 16 identical isotropic radiators with spacing /2. Derive an expression and plot the radiation pattern. Also find directivity and beam		
		width.	7M	
		UNIT-III		
5.	a)	List out the types of horn antenna and Explain what optimum horn is.	10M	
	b)	Design the pyramidal horn antenna with the following details:		
		Mouth aperture = 10 X10; Frequency of operation = 5 GHz.	4M	
		OR		
6.	a)	Sketch and explain the constructional features of a helical antenna.	7M	
	b)	Explain about flat sheet and corner reflector antennas.	7M	
		UNIT-IV		
7.	a)	Discuss briefly the salient features of ground wave propagation.	7M	
	b)	Derive expression for field strength when space wave propagates between		
		transmitting and receiving antennas of heights h_t and h_r respectively.	7M	
		OR		
8.		What are the conditions under which the wave travels in the ground wave mode?		
		List out various applications of the ground wave propagation.	14M	
		UNIT-V		
9.		Derive the refractive index expression in the ionosphere	7M	
	b)	Explain reflection wave propagation mechanism in the absence of earth's magnetic field	7M	
		OR		
10.	a)	Discuss about the super refraction with relative figures in different cases	7M	
	b)	Write a short note on skip distance and virtual height, and Critical frequency and Maximum usable frequency	7M	
		Maximum deable mequency	,	

Blooms Level

Hall Ticket Number :					

Code: 5G453

Max. Marks: 70

R-15

Time: 3 Hours

III B.Tech. I Semester Supplementary Examinations February 2021

Computer System Architecture

(Electronics and Communication Engineering)

	I		Acurles 1	10013	
		Answer all five units by choosing one question from each unit ($5 \times 14 = 70 \text{ N}$)	viarks j		
			Marks	СО	Blooms
		UNIT-I			Level
1.	a)	Define bus? Draw the figure to show how functional units are interconnected using a			
١.	a)	bus and explain it.	8M	CO1	L1,L2
	b)	Differentiate between fixed point and floating-point representation	6M	CO1	L2
	υ,	OR	Oivi	001	
2.	a)	Describe the different types of computers.	7M	CO1	L2
	b)	Convert the following binary number into decimal & octal number:			
		i) (00010.110) ₂			
		ii) (000.10110) ₂	7M	CO1	L1,L3
		UNIT-II			
3.	a)	Define register transfer language? Explain the basic symbols used in register transfer	7M	CO1	L1
	b)	Draw the block diagram of arithmetic logic shift unit and explain its operations	7M	CO1	L2
	,	OR			
4.	a)	Explain about shift micro operations with examples.	7M	CO1	L2
	b)	Describe the memory reference instructions with an example.	7M	CO1	L2
		UNIT-III			
5.	a)	Define addressing mode? Explain the following addressing modes with examples.			
		i) Direct Addressing Mode	8M	000	L1
	ل ما	ii) Immediate Addressing Mode		CO2	
	b)	Explain the three basic types of data manipulation instructions. OR	6M	CO2	L2
6.	a)	Differentiate relative and absolute addressing modes for branch instructions.	7M	CO2	L2
Ο.	b)	Explain the operation of a Micro programmed control unit using a diagram.	7M	CO2	L2
	D)	UNIT-IV	7 101	002	LZ
7	2)	Explain the following mapping techniques used for cache mapping			
٠.	a)	i) Associative mapping cache			
		ii) Direct mapping cache			
		iii) Set-associative mapping cache	7M	CO2	L2
	b)	List the functionalities of I/O interface. Draw and explain a combined input/output	71.4	000	1410
		interface circuit. OR	7M	CO2	L1,L2
8.	a)	Describe memory hierarchies in detail.	8M	CO2	L2
٥.	b)	Briefly explain various peripheral devices used in computer system.	6M	CO2	L2
	~,	UNIT-V	Sivi	002	
9.	a)	Explain the instruction pipeline processing in RISC architecture.	7M	CO3	L2
	b)	Explain the characteristics of multiprocessors.	7M	CO3	L2
		OR			
10.	a)	Discuss about Arithmetic pipeline.	7M	CO3	L2
	b)	Define Parallel Processing? Explain it in detail.	7M	CO3	L1,L2

Hall Ticket Number :

R-15

Code: 5G352

III B.Tech. I Semester Supplementary Examinations February 2021

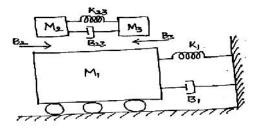
Control Systems

(Electronics and Communication Engineering)

Max. Marks: 70

Time: 3 Hours

Answer all five units by choosing one question from each unit ($5 \times 14 = 70 \text{ Marks}$)



Marks CO Blooms Level

UNIT-I

1. a) Explain in brief about classification of control systems.

- 6M CO1
- b) For the mechanical system given below, write differential equations and find the transfer function.

OR

8M CO1

L1


L2

L5

L5

L2

- 2. a) Compare the Open loop and Closed loop control systems.
- 6M CO1 L4
- b) Using mason gain formula find the transfer function for the signal flow graph shown in figure.

8M CO1

UNIT-II

- 3. a) Derive the expression of rise time for unit step response of second order system
- 7M CO2
- b) Explain about various test signals used in control system?
- 7M CO2 L2

OR

- 4. a) What are the difficulties in RH stability criterion? Explain how you can overcome them?
- 6M CO2 L2

b) A unity feedback system has a plant

$$G(S) = \frac{K(S+0.5)}{S(S+1)(S^2+2S+2)}$$
 sketch the root locus and find the roots

when $\zeta = 0.5$.

8M CO2 L2

UNIT-III

5. a) Deduce the expressions for resonant peak & resonant frequency and hence establish the correlation between time response & frequency response.

7M CO3

b) Given $\zeta = 0.7$ & $\omega n = 10$ r/s find resonant peak, resonant frequency & Bandwidth.

7M CO3 L2

Code: 5G352

OR

6. a) What is "Nyquist Contour"?

6M CO3

L1

L5

b) A system is given by $G(S) = \frac{K}{S^2(S+4)(S+1)}$ Sketch the Nyquist plot

hence determine the stability of the system

M8 CO3

UNIT-IV

7. a) What is compensation? What are the different types of compensators?

L1 4M CO4

b) What is a lead compensator, obtain the transfer function of lead compensator and draw pole-zero plot?

L1 5M CO₄

c) Explain the different steps to be followed for the design of lead compensator using Bode plot?

5M CO4 L2

OR

8. A unity feedback system has an open loop transfer function

$$G(S) = \frac{K}{(S(S+1)(0.2S+1))}$$
 Design a suitable phase lag compensator

to achieve following specifications Kv= 8 and Phase margin 40 deg with usual notation.

14M CO4 L6

UNIT-V

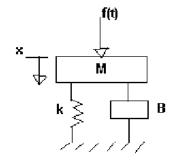
9. a) Explain properties of state transition matrix.

6M CO5 L2

b) Consider the transfer function

$$\frac{Y(S)}{U(S)} = \frac{(2S^2 + S + 5)}{(S^3 + 6S^2 + 11S + 4)}$$

Obtain the state equation by direct decomposition method and also find state transition matrix.


OR

8M L1 CO₅

10. a) Discuss the significance of state Space Analysis?

6M CO5 L2

Obtain state space mode for given mechanical system as shown in the figure.

L1 8M CO5

Page 2 of 2

	Hall Ticket Number :										
--	----------------------	--	--	--	--	--	--	--	--	--	--

Code: 5G351 III B.Tech. I Semester Supplementary Examinations February 2021

Digital Communication

R-15

(Electronics and Communication Engineering)

	Μ	Tin Answer all five units by choosing one question from each unit (5 x 14 = 70)	ne: 3 H Marks		
		******	·	co	Blooms
		UNIT-I	Marks	CO	Level
1.	a)	Explain the functional description of digital communication system in detail. with neat sketch	7M	1 & 3	L2
	b)	A television signal with a bandwidth of 4.2 MHz is transmitted using binary PCM. The number of quantization levels is 512. Calculate the transmission bandwidth			
		and output SNR	7M	1 & 3	L3
2.	a)	OR In a binary PCM system, the output signal to quantizing noise ratio is to be held to a minimum of 40dB. Determine the number of required levels and find the			
	b)	corresponding output signal to quantization noise ratio. Explain the modulation and demodulation procedure in DPCM system.	7M 7M	1 & 3	L3 L2
	b)	UNIT-II	/ IVI	1 & 3	LZ
3.	a)	Describe the generation and coherent detection of Amplitude Shift Keying (ASK) signal.	7M	1 & 3	L2
	b)	Discuss about the Coherent Detection of Frequency Shift Keying.	7M	1 & 3	L2
4.	a)	OR The bit stream 1011100011 is to be transmitted using DPSK. Determine the			
٦.	aj	encoded sequence and transmitted phase sequence.	7M	1 & 3	L3
	b)	Explain about DPSK system. And also give the comparison between DPSK and PSK.	7M	1 & 3	L2
		UNIT-III			
5.		Write short notes on joint entropy, condition entropy and mutual information.	7M	1 & 3	L1
	b)	A continuous time signal is band limited to 5 KHz. The signal is quantized in eight levels of a PCM system with probabilities 0.25, 0.2, 0.2, 0.1, 0.1, 0.05, 0.05 and 0.05. Calculate the entropy.	7M	1 & 3	L3
		OR	/ IVI	1 & 3	LS
6.	a)	Define the following			
		i)Information ii) Entropy iii) Rate of Information iv) Channel Capacity	7M	1 & 3	L1
	b)	Prove that $I(X,Y) = H(X) - H(X/Y)$ UNIT-IV	7M	1 & 3	L3
7.	a)	With an example explain the error detection and correction capabilities of linear			
	·	block codes.	7M	2 & 3	L3
	b)	Compare code efficiency of Shanon Fano coding and Huffman coding when five source messages have probabilities m1=0.4, m2=0.15, m3=0.15, m4=0.15,			
		m5=0.15.	7M	2 & 3	L1
8.		OR The parity check bits of a (8,4) block code are generated by C0=m1+ m0+ m3			
		Where m ₁ , m ₂ and m ₃ are the message digits. i) Find the generator matrix and the parity check matrix for this code.			
		ii) Find the minimum weight of this code.iii) Find the error-detection and correction capabilities of this code.	14M	2 & 3	L3
		UNIT-V		-7 -	
9.	a)	Describe the algebraic structure of cyclic codes.	7M	2 & 3	L1
	b)	Construct a (7, 4) binary systematic cyclic code using a generator polynomial $g(x) = x3+x^2+1$ for the data: 1010	7M	2 & 3	L6
10.	a)	OR Write the advantages and disadvantages of convolutional codes.	7M	2 & 3	L1
٥.	b)	Discuss in brief about the analysis of convolutional encoders.	7M	2 & 3	L1

						R-15
Hall Ticket Number :						

Code: 5GA51

III B.Tech. I Semester Supplementary Examinations February 2021

Managerial Economics and Financial Analysis

(Common to CE, ME & ECE)

Max. Marks: 70 Time: 3 Hours

Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)

Marks CO Blooms Level

UNIT-I

1. Define Managerial Economics and Discuss its nature and scope.

OR

- 2. Explain any two principles of Managerial Economics.
 - (a) Opportunity Cost Principle
 - (b) Risk and Uncertainty Principle
 - (c) Equi-Marginal Principle

UNIT-II

3. Discuss the Cost-Output Relationship in short run and long run.

OR

- 4. Explain the following demand forecasting methods
 - (a) Consumers survey method
 - (b) Regression Method

UNIT-III

5. Discuss the problems and remedies of Public Sector Business Organisations.

OR

- 6. Explain the following pricing methods
 - (a) Market Skimming Pricing
 - (b) Peak Load Pricing

UNIT-IV

7. Discuss double entry book keeping and state the procedure for preparing balance sheet of the firm at the end of financial year.

OR

8. A company is considering two mutually exclusive projects. Both require an initial investment of ₹ 10,000 each and have a life of five years. The cost of capital of the company is 10%. The estimated cash inflow of the two projects are as follows:

Year	1	2	3	4	5	
Project A	4000	4000	4000	4000	4000	
Project B	5000	6000	5400	4000	5000	

You are required to calculate Net Present Value and suggest which project should be accepted. The PV factors at 10% from first year to fifth year are 0.909, 0.826, 0.751, 0.683 and 0.621 respectively.

UNIT-V

9. Explain the meaning of financial ratio and discuss its significance in analysing the financial performance of a firm.

OR

- 10. From the following information, you are required to prepare a Balance Sheet.
 - (i) Current Ratio 1.75
 - (ii) Liquid Ratio 1.25
 - (iii) Stock Turnover Ratio (Cost of sales/closing stock) 9
 - (iv) Gross Profit Ratio 25 per cent
 - (v) Debt collection period 1.5 months
 - (vi) Reserves and surplus to capital 0.2
 - (vii) Turnover to fixed assets 1.2
 - (viii) Capital gearing ratio 0.6
 - (ix) Fixed Assets to net worth 1.25
 - (x) Sales for the year ₹ 12,00,000
