	H	Hall Ticket Number :		_	
	С	Sode: 5G356	R-15		
		III B.Tech. I Semester Supplementary Examinations March/April 2	023		
		Microprocessors and Interfacing			
		(Computer Science and Engineering)	0.11		
		Max. Marks: 70 Answer any five full questions by choosing one question from each unit (5x14 = 7	: 3 Hou '0 Mark		
		******		•	DI
		UNIT-I	Marks	CO	BL
1.		Draw the architecture of 8086 microprocessor and explain the function of each			
		unit in detail.	14M	CO1	2
		OR			
2.	a)	The physical branch address is 5A230 H when CS = 5200 H. Calculate the	71.4	004	•
	L \	physical address if CS is changed to 7800 H.	7M		3
	b)	Explain the ASSEMBLY directives with examples.	7M	CO1	2
		LINUT II			
3.		With necessary diagrams explain the A/D converter in detail.	1414	CO2	2
٥.		OR	14111	002	2
4.		Interface a stepper motor to 8086 microprocessor and write an assembly			
••		language program (ALP) to rotate 100 teeth, 4-phase stepper motor five rotations			
		clockwise and five rotations anticlockwise.	14M	CO2	5
_		UNIT-III			
5.		Develop the structure of cascading interrupt connection using 8259.	14M	CO3	6
_		OR			_
6.		Sketch and explain how to Interface 8257 with 8086	14M	CO3	2
7	a)	UNIT-IV Describe asynchronous data transfer schemes with suitable examples.	7M	CO2	1
٠.	a) b)	Give the structure how to connect the devices using RS232	7 M		3
	D)	OR	<i>1</i> IVI	002	3
8	a)	Explain RS-232C Serial Data Standard and 20ma Current loop	7M	CO2	2
٥.	b)	Draw and Explain TTL to RS232 & RS232 to TTL conversion circuits	7M		2
	٠,			002	_
		UNIT-V			
9.		Explain segmentation in 80386	14M	CO4	2
		OR			
10.		Explain Real and Virtual mode in 80286? Also explain the mapping of virtual			
		memory with physical memory and also tell the phenomenon of using page table			_
		in microprocessor? Draw and discuss the register organization of 80386?	14M	CO4	2

Hall Ticket Number :										
----------------------	--	--	--	--	--	--	--	--	--	--

Code: 5G151

R-15

III B.Tech. I Semester Supplementary Examinations March/April 2023

Compiler Design

(Computer Science and Engineering)

			: 3 Ho								
	A	Answer any five full questions by choosing one question from each unit $(5x14 = 7)$	'0 Mar	ks)							
			Marks	СО	BL						
		UNIT-I									
1.	a)	Consider the following Recursive grammar: S Sa Sb a b. Obtain an	4014	004							
		equivalent grammar with no left recursion?	10M	CO1	L3						
	b)	What is interpreter? Write Advantages and Disadvantages of Interpreter OR	4M	CO1	L1						
2.	a)	Explain the different phases of the Compiler, showing the output of each phase									
	ω,	using an example for the statement $z = (a*20) + b - c$?	10M	CO1	L2						
	b)	What is the difference between a pass and phase of a compiler?	4M	CO1	L3						
	,	UNIT-II									
3.	a)	Design CLR parser for the following grammar.									
		$E \rightarrow E+T, E \rightarrow T, T \rightarrow T*F, T \rightarrow F, F \rightarrow (E), F \rightarrow id$	14M	CO3	L6						
	OR										
4.	a)	Explain about Dangling Else ambiguity by considering the following grammar.	71.4	000	1.0						
	L۱	$S1 \rightarrow S$ $S \rightarrow iSeS \mid iS \mid a$	/ IVI	CO3	L2						
	b)	Explain about Error recovery in parsing by considering the below grammar E →E + E E * E (E) id	7M	C03	L2						
			/ IVI	C03	LZ						
5	a)	UNIT-III Below grammar generates binary numbers with a "decimal" point:									
٥.	a)	S \rightarrow L. L L, L \rightarrow LB B, B \rightarrow 0 1 Design an L-attributed SDD to compute									
		S.val, the decimal-number value of an input string.	7M	CO3	L6						
	b)	Write about type inference for polymorphic functions	7M	CO3	L5						
	,	OR									
6.	a)	What is syntax directed translation? How it is used for translation of expressions?	7M	CO3	L3						
	b)	Distinguish static and dynamic type checking?	7M	CO3	L5						
		UNIT-IV									
7.	a)	What are various attributes of symbol table?	5M	C04	L1						
	b)	Explain about the static storage allocation strategy with example and discuss its	014	004							
		limitations?	9M	C04	L2						
R	a)	OR Discuss about the data structures used for the Symbol table?	7M	C04	L2						
0.	b)	Illustrate the functions of Heap management?	7M	C04	L4						
	D)	UNIT-V	<i>1</i> IVI	004	LŦ						
9.	a)	Describe Natural loops and Inner loops of a flow graph with an example?	7M	CO5	L1						
0.	b)	Discuss how Induction Variables can be detected and how transformation can	/ IVI	000	_'						
	υ,	be applied?	7M	CO5	L2						
		OR									
10.	a)	List and explain about object code forms?	7M	CO5	L1						
	b)	What are the applications of DAG? Explain how the given expression can be									
		converted into a DAG. (a+b)*(a+b)+(c+d)	7M	CO5	L2						