III B.Tech. I Semester Supplementary Examinations August 2021

# Design and Drawing of Reinforced Concrete Structures 

( Civil Engineering )

Max. Marks: 70

Time: 3 Hours
Use of IS 456:2000 and SP 16 Design aided charts books are permitted in the examination hall PART-A
(Answer any one question)

## 1x28=28 marks

Marks co | Blooms |
| :---: |
| Level |

1. a) T - beam consists of a flange 1100 mm wide and 120 mm deep. The depth of the beam is 550 mm up to the centre of tension steel and width of the web is 250 mm . Design the $T$ - beam completely for an ultimate moment of $460 \mathrm{kN}-\mathrm{m}$. Use M 25 grade of concrete and Fe 415 grade of steel. Sketch the reinforcement details.
b) Design an axially loaded tied column with an unsupported length of 3.1 m . The column is fixed at one end and pinned at the other end. The column has to carry a factored load of 1800 kN . Use M 25 grade of concrete and Fe 415 grade of steel. Sketch the reinforcement details.

## OR

2. a) Determine the reinforcement required for a rectangular beam section with the following data:
Width of section $=230 \mathrm{~mm}$, depth of section $=450 \mathrm{~mm}$, factored B.M $=125 \mathrm{kN}-\mathrm{m}$, factored torsional moment $=50 \mathrm{kN}-\mathrm{m}$, factored S.F. $=80 \mathrm{kN}$. Adopt M 25 grade of concrete and Fe 415 grade of steel. Sketch the reinforcement details.
b) A rectangular simply supported beam is having a clear span of 3.5 m and 300 mm x 400 mm in cross section. It is reinforced with 4 bars of 20 mm in diameter. Use M 25 and Fe 415. Calculate the short term and long term deflection of the beam by taking superimposed live load as $15 \mathrm{kN} / \mathrm{m}$ and dead load as $10 \mathrm{kN} / \mathrm{m}$. Assume an effective cover as 40 mm .

## PART - B <br> (Answer any three questions)

3. a) Discuss the assumptions in limit state of collapse in flexure.
b) Discuss in what occasions, doubly reinforced sections cab be preferred.

## 3x14=42 marks

7M 1
2
7M 12
4. Simply supported beam of 225 mm wide and 450 mm effective depth carries a u.d.l. of $80 \mathrm{kN} / \mathrm{m}$ including its own weight over an effective span of 6 m . The reinforcement consists of 5 bars of 25 mm dia, out of these 2 bars can be safely bent up at 1 m distance from the support. Design the shear reinforcement. Adopt M 20 grade of concrete and Fe 415 grade of steel. Assume width of support as 300 mm . Sketch the reinforcement details.
5. Design an interior panel of slab for a room of $3.5 \mathrm{~m} \times 5.5 \mathrm{~m}$ clear dimensions supported on 230 mm thick masonry walls all around using IS Coefficients. The corners are held down. Take Live load as $2.0 \mathrm{kN} / \mathrm{m}^{2}$. Use M20 and Fe415. Sketch the reinforcement details also.
6. Design a square column of $300 \mathrm{~mm} \times 300 \mathrm{~mm}$, is subjected to an axial factored load of 1800 kN and factored moments of $28 \mathrm{kN}-\mathrm{m}$ and $32 \mathrm{kN}-\mathrm{m}$ about the two mutually perpendicular axes respectively. Adopt M 25, Fe 415 and assume an effective cover as 40 mm .
7. Design a square isolated uniform footing for a column of size $300 \mathrm{~mm} \times 300 \mathrm{~mm}$ carrying an axial load of 1300 kN . The S.B.C. of the soil is $250 \mathrm{kN} / \mathrm{m}^{2}$. Use M 25 and Fe 415 . Sketch the reinforcement details also.
$\square$
Code: 7G652
III B.Tech. I Semester Supplementary Examinations August 2021

## Engineering Geology

( Civil Engineering )

Max. Marks: 70<br>Time: 3 Hours<br>Answer all five units by choosing one question from each unit ( $5 \times 14=70$ Marks )

## UNIT-I

1. Describe any two case studies where failure of civil engineering constructions happened due to geological draw backs.

14M CO1

## OR

2. Describe the importance of geology from civil engineering point of view with reference to dams.

14M CO1

## UNIT-II

3. Explain the merits of studying minerals by their physical properties and interpret physical properties for the minerals Feldspar, Olivine, Hornblende and Muscovite.

## OR

4. Discuss in detail about various types of lustre, cleavage and degree of transparency with examples.

14M CO2

## UNIT-III

5. Discuss intrusive and extrusive forms of igneous rocks with neat diagrams.

OR
6. Explain all types of folds with a neat sketch.

## UNIT-IV

7. Explain various geological controls of groundwater movement in different types of rocks.

## OR

8. Discuss the causes and effects of earthquakes and the precautions in seismic areas.

14 M CO4 L2

## UNIT-V

9. Explain the purposes and effects of tunneling.

OR
10. Explain the factors contributing to the success of a reservoir.

14M CO5
$\square$
Code: 7G653
III B.Tech. I Semester Supplementary Examinations August 2021

## Environmental Engineering-I

( Civil Engineering )
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ( $5 \times 14=70$ Marks )
$* * * * * * * * *$

|  |  | Marks | CO | Blooms |
| :---: | :---: | :---: | :---: | :---: |
|  | UNIT-I |  |  |  |
| 1. a) | Discuss the variations in water demand. | 7M | 1 | 2 |
| b) | Forecast the population by 2030, 2040 and 2050 for a city by arithmetic and geometric methods. Past population details are as follows. 1960(12000): 1970(16500): 1980(24200): 1990(30600): 2000(45000): 2010(56500) and 2020(76500). | 7M | 1 |  |
|  | OR |  |  |  |
| 2. a) | Define design period? Draw flow chart of a water supply system? | 7M | 1 | 2 |
| b) | List the sources of water and explain the quality and quantity aspects of each source of water? | 7M | 1 | 2 |
|  | UNIT-II |  |  |  |
| 3. a) | Discuss the various layouts of distribution networks? | 7M | 2 | 1 |
| b) | Discuss how to select an intake location? Draw and label a reservoir intake? | 7M | 2 | 1 |
|  | OR |  |  |  |
| 4. a) | List various systems of distribution? Explain them briefly? | 7M | 2 | 2 |
| b) | Discuss any four tests conducted for determining chemical impurities in water? | 7M | 2 | 1 |
|  | UNIT-III |  |  |  |
| 5. a) | List the conventional water treatment units? Explain the theory of sedimentation? | 7M | 3 | 1 |
| b) | Design a sedimentation tank for a population of 150000 with a per capita demand of 120 liters. Do the necessary checks. | 7M | 3 | 6 |
|  | OR |  |  |  |
| 6. a) | Explain the process of fixing the coagulant dose at a conventional water treatment unit? | 7M | 3 | 2 |
| b) | Explain the purpose and methods of disinfections? | 7M | 3 | 2 |
|  | UNIT-IV |  |  |  |
| 7. a) | Summarize the procedure used for estimation of storm water discharge? | 7M | 4 | 2 |
| b) | List and explain various types of sewers? | 7M | 4 | 1 |
|  | OR |  |  |  |
| 8. a) | Draw and label any three sewer appurtenances? | 7M | 4 | 1 |
| b) | Explain the stepwise procedure involved in the sewer design? | 7M | 4 | 2 |
|  | UNIT-V |  |  |  |
| 9. a) | Explain the physical and chemical characteristics of sewage? | 7M | 5 | 2 |
| b) | Discuss the following i)BOD ii)COD | 7M | 5 | 2 |
|  | OR |  |  |  |
| 10. a) | Explain unit operations of various pretreatment units of sewage treatment? | 7M | 5 | 2 |
| b) | List the features of Trickling filter Vs Activated sludge process? | 7M | 5 |  |

## Code: 7BA51

III B.Tech. I Semester Supplementary Examinations August 2021

## Managerial Economics and Financial Analysis

( Civil Engineering )
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ( $5 \times 14=70$ Marks )

## UNIT-I

1. Explain the meaning of Managerial Economics and state its relationship with other functional areas in decision making.

OR
2. Answer any two principles of Managerial Economics
(a) Discounting Principle
(b) Incremental Concept
(c) Time Perspective

## UNIT-II

3. What is elasticity of Demand and discuss the different types of price elasticity of Demand?

## OR

4. Discuss the objectives, assumptions and importance of Break-even analysis.

## UNIT-III

5. Explain Price-Output determination under perfect competition in long-run.

OR
6. Discuss the merits and demerits of Public and Private Sector Business Organizations.

> UNIT-IV
7. From the following Trail Balance and additional information, you are required to prepare Final Accounts

From Prepare Final Accounts.

| Particulars | Dr. | Cr. |
| :--- | ---: | ---: |
|  | $₹$ | $₹$ |
| Capial | 5,400 | 20,000 |
| Sundry Debtors | 1,800 |  |
| Drawings | 7,000 |  |
| Plant \& Mtachinery |  |  |
| Sundry Creditors | 10,000 | 2,800 |
| Wages | 21,000 |  |
| Purchases | 4,000 |  |
| Opening Stock | 3,000 |  |
| Bank Balance | 300 |  |
| Carriage Charges | 400 |  |
| Salaries | 900 |  |
| Rent |  |  |
| Sales | 53,800 | 53,000 |

## Additional Information:

(i) Closing Stock ₹ 1,800 .
(ii) Outstanding Rent ₹ 300 and outstanding wages ₹ 500 .
(iii) Charge Depreciation on Plant \& Machinery at 20\%.
8. What is Capital Budgeting and how do you calculate the Net Present Value for the project?

## UNIT-V

9. Explain any three ratios of the following
(a) Debtors turn-over ratio
(b) Proprietory ratio
(c) Fixed assets turn-over ratio
(d) Absolute quick ratio

## OR

10. With the help of the following ratios regarding XYZ Co, draw the Balance Sheet of the company for the year 2020.
(i) Current Ratio
2.5
(ii) Liquidity Ratio : 1.5
(iii) Net working Capital : ₹ 3,00,000
(iv) Stock Turnover Ratio (Cost of sales/closing stock) : 6 times
(v) Gross Profit Ratio : 20 per cent
(vi) Fixed Assets Turnover Ratio (on cost of sales) : 2 times
(vii) Debt Collection Period: 2 months
(viii) Fixed assets to shareholders net worth : 0.80
(ix) Reserve and surplus to capital : 0.50

Code: 7G655
III B.Tech. I Semester Supplementary Examinations August 2021

## Structural Analysis-II

( Civil Engineering )
Time: 3 Hours
Max. Marks: 70
Answer all five units by choosing one question from each unit ( $5 \times 14=70$ Marks )
*********

## UNIT-I

1. A parabolic 3 hinged arch carries a UDL of $25 \mathrm{kN} / \mathrm{m}$ on the left half of the span. It has a span of 40 m and a central rise of 7 m . Determine the resultant reaction at supports. Find the bending moment, normal thrust and radial shear at a section 15 m from left support.

OR
2. A parabolic two hinged arch of span 60 m and central rise of 6 m is subjected to a crown load of 40 kN . Allowing rib shortening and temperature rise of $20^{\circ} \mathrm{C}$, determine horizontal thrust, H. Take moment of Inertia as $6 \times 10^{5} \mathrm{~cm}^{4}$, Area $=1000 \mathrm{~cm}^{2}, \mathrm{E}=2 \times 10^{4} \mathrm{MPa}$, $\alpha=11 \times 10^{-6} /$ o $C, I=I_{0} \sec \theta$.

## UNIT-II

3. A portal frame $A B C D$ is hinged at $A$ and fixed at $D$ and has stiff joints at $B$ and $C$. the loading is as shown in Fig.1. Draw the bending moment diagram and deflected shape of the frame. All dimensions are in m . Use Slope deflection method.


Fig. 1
OR
4. Analyse the frame shown in Fig. 2 by moment distribution method. Draw the bending moment diagram.


Fig. 2

## UNIT-III

5. In a continuous beam shown in Fig. 2 The support ' $B$ ' sinks by 10 mm .Determine the moments by Kani's method and draw BMD.

6. Determine the end moments of the continuous beam as shown in Fig. 3 below by Kani's method. $E$ is constant.


Fig. 3
UNIT-IV
7. Analyse the continuous beam shown in Fig. 4 by flexibility method, support $B$ sinks by 10 mm .


Fig. 4
OR
8. Analyse the continuous beam shown in Fig.5. by stiffness method.


Fig. 5

## UNIT-V

9. A beam of span 6 m is to be designed for an ultimate UDLof $25 \mathrm{kN} / \mathrm{m}$ for entire span. The beam is simply supported at the ends. Design a suitable I section using plastic theory, assuming $\sigma y=250 \mathrm{MPa}$.

OR
10. The section shown in Fig. 6 is ISMB 400. Calculate plastic moment M, and shape factor. Take $\sigma y=250 \mathrm{MPa}$.


Fig. 6

OR
8. a) Explain the classification of canals. ..... 7M ..... CO ..... L05
b) Design an irrigation channel in alluvial soil according to Lacey's silt theory forthe following data.
Full supply discharge $=10 \mathrm{~m}^{3} / \mathrm{s}$
Lacey's silt factor $=0.9$
Side slopes of channel $=1 / 2(\mathrm{H})$ : $1(\mathrm{~V})$.7M CO5L05
UNIT-V
9. a) Define irrigation. Enumerate and explain the factors which necessitate irrigation.7M CO5 L05
b) Explain the various methods of improving soil fertility. ..... $7 \mathrm{M} \mathrm{CO5}$ ..... L05
OR10. a) What is 'duty'? Explain the factors affecting duty.7M CO5 L05
b) A water course commands an irrigated area 1000 hectares. The intensity of irrigation of rice in this area is $70 \%$. The transplantation of rice crop takes 15 days and during the transplantation period the total depth of water required by the crop on the field is 500 mm . During the transplantation period, the useful rain falling on the field is 120 mm . Find the duty of irrigation water for the crop on the field during transplantation, at the head of the field and also and also at the head of the water course assuming losses of water to be 20\% in the water course. Also calculate the discharge required in the water course.

