l	~	all Ticket Number : R-17	
	Co	de: 7GC51 III B.Tech. I Semester Supplementary Examinations February 2022	1
		Environmental Science	
		(Electrical and Electronics Engineering)	
		ax. Marks: 70 Time: 3 Hours	
	Ar	nswer any five full questions by choosing one question from each unit (5x14 = 70 Marks)	
			Marks
	-)	UNIT-I	
1.	,	Define environment. Discuss briefly the importance of environment.	7M
	b)	List out different branches of science having close relationship with environmental studies.	7M
n		OR Differentiate between the etmeenberg and bydreenberg	714
2.	a) b)	Differentiate between the atmosphere and hydrosphere.	7M 7M
	b)	Outline the major causes for environmental degradation.	7M
		UNIT-II	
3.		Describe the environmental problems associated with extraction of mineral resources.	14M
0.		OR	
4	a)	Categorize the types of natural resources.	7M
	∽, b)	Discuss the importance of water as a natural resource.	7M
	,		
		UNIT-III	
5.	a)	Summarize the characteristic of forest ecosystem.	7M
	b)	Explain the concept of food chain.	7M
		OR	
6.	a)	With a neat sketch, explain how the element carbon is recycled in nature.	7M
	b)	Discuss the hot spots of India.	7M
		UNIT–IV	
7.	a)	Discuss the major effects of thermal pollution.	7M
	b)	Describe the various control measures of soil pollution.	7M
		OR	
8.	a)	Describe the sources of water pollution.	7M
	b)	Summarize the effects of radiation pollution.	7M
_	、		
9.	a)	Summarize the salient features of wild life protection act.	7M
	b)	Discuss the effects of population explosion.	7M
0	_)	OR Describe the chiestives of family welfare programmes	714
	a)	Describe the objectives of family welfare programmes.	7M
0.	b)	Briefly discuss HIV/AIDS, mode of its spread and its effect on human health.	7M

	ŀ	Hall Ticket Number :										R-1	7]
	С	ode: 7G254										K-1.	/	
		III B.Tech. I Sen	nestei	r Sup	plei	mer	ntary	' Exar	ninat	ions Feb	ruary	2022		
					•			onic						
		(Electi	rical	and	Elec	tron	ics En	ginee	ering)				
	١	Nax. Marks: 70							0	0 /	Tir	me: 3 l	Hours	
	A	Answer any five full que	estions	by ch	noosi	-	-	uestior	n from	each uni	t (5x14	= 70 N	1arks)	
						****	*****							
												Marks	СО	Blooms Level
						 I	7							
1	a)	Describe the construct	tional	L				with th	na hali	n of schei	matic			
1.	aj	diagram and the circui			3 01			vviti ti			natic	7M	1	2
	b)	0			la of	90D						7M	-	2
	b)	Explain the various tur	n-on m	ethot			s.					7 171	1	2
					OF									
2.	a)	Calculate the number of					•			•				
		branch of a series and	•								oltage			
		and current rating of 7.5					ne de	rating	actor (of 14%.		7M	1	3
	b)	Explain briefly parallel	conne	ction	of SC	CRs.	_					7M	1	3
					UNIT	 11								
3.		Explain briefly the spe	cificatio	ons ar	nd ra	tings	of S	CRs.				14M	2	2
					OF	र								
4.	a)	Discuss about over vo	ltage p	rotect	ion b	ov me	etal o	xide va	aristors	S.		7M	2	4
	b)	Analyze the cooling me	• •			-						7M	2	4
	0)	Analyze the cooling the	echani					unynsi	015.			7 101	2	4
_	-)	E ministration and a second			UNIT			. 16						
5.	a)	Explain the operating with 'R' load.	princip	le of :	single	e pna	ase r	iait wa	ve cor	ntrolled red	ctifier	714	2	0
	L X											7M	3	2
	b)	Summarize the role of	freewr	eelin	-		con	verters	•			7M	3	2
					OF	R								
6.	a)	Explain the operation of	of singl	e pha	se fu	illy c	ontro	lled bri	dge re	ectifier with	י 'RL'			
		load with neat circuit d	liagram	and	nece	ssary	y wav	/eform	s.			7M	3	3
	b)	A two pulse converter	r is fed	l with	a 23	30V,	50 H	lz sup	ply. T	he load oi	n the			
		converter is a pure res	sistance	e of R	=10	. 0	btain	the av	verage	output vo	ltage			
		for a firing angle of =	=135°	_			_					7M	3	3
				l	UNIT	–IV								
7.		Define a dc chopper?	Descri	be th	e vai	rious	type	s of ch	nopper	· configura	tions			
		briefly with necessary	sketch	es.								14M	4	2
					OF	र								
8.		With a neat circuit dia	aaram.	expla	in th	e op	eratio	on of b	ouck c	onverter.	Draw			
-		the load voltage and l	•	•		•								
		the output voltage.									_	14M	4	3
		. 0			UNIT	-v								
9.		Differentiate CSI and \	121		•••••	•						14M	5	2
5.			. 01.										5	2
		.	••		OF								_	-
10.		Analyze series inverter	r with n	eat c	ircuit	-		and wa	avetorr	ns.		14M	5	4
						*	**							

	Hall	Ticket Number :]						7
(^ode	e: 7G251						<u></u>]		R-17	
•	Joue	III B.Tech. I Semeste	r Sup	pler	ner	ntary	/ Exc	amir	natio	ons .	Jan/F	eb 2	022	
				AC I										
		(Electi	ical (and	Elec	tron	ics E	ngin	eeri	ng)		т:		
		k. Marks: 70 Answer all five units by ch	oosing	g one		estio	n fro	m ec	ich u	unit (5 x 14		ne: 3 Hours Marks)	
						T–I								
1.	a)	Derive the EMF equa	ation				or							7M
	b)	A 3 phase, 6 pole, s						nato	or re	volv	ves at	100	00 r.p.m.	
	,	The stator has 90 slo	ots a	nd 8	col	nduo	ctors	s pe	r slo	ot. T	he flu	іх ре	er pole is	
		0.05wb (sinusoidally			,			ate	the	volt	age (gene	rated by	
		the machine if the wi	nding	0		is 0.	.96.							7M
~	-)		(OR		I'	1 -						
2.	a)	Compare salient pole generator	e rot	or a	na r	non-	salle	ent	pole	rot	or of	sync	nronous	7M
	b)	Distinguish betweer	(i)	Inte	ara	ا دا	ot :	bne	fra	ctio	nal s	lot v	windings	7 111
	0)	(ii) concentrated and	• •		-				па	Clioi			windings	7M
		(.)				T–II								
3.	a)	What is synchronous	; imp	eda	nce	? H	ow o	do y	ou c	calc	ulate	sync	chronous	
		impedance experime	ntall	y?				-				-		7M
	b)	A 100 kVA, 3000V	, 50	Hz	3-pł	nase	e st	ar c	conr	necte	ed al	terna	ator has	
		effective armature re												
		produce short-circuit 1040 V (line). Calcul								-				
		and 0.8 leading powe						•	-			ι υ.c	ayying	7M
) DR	aw	pria		alag	lan				7 101
4.	a)	Discuss Blondel's	twore	eact	ion	the	ory	ар	plica	able	to	salie	ent pole	
		synchronous genera	or.				-	-	-				-	7M
	b)	A salient pole alterna	ator h	nas (d-ax	kis a	nd o	q-ax	is re	eact	ance	of 0.	.8pu and	
		0.5pu respectively.									•		•	
		percentage regulatio	n wr	nen	the	gen	iera	tor i	s de	elive	ring	rated	d load at	7M
		08 p.f lead.			INI	T–III								7 111
5.	a)	Discuss the operatio	n of					ene	rato	r co	nnec	t het	o infinite	
0.	ω,	bus with necessary e		-									•	7M
	b)	A 2200 V, 50 Hz, 3 p	hase	e, sta	ar co	onne	ecte	d alt	terna	ator	has a	an ef	ffective	
		resistance of 0.5 ohr	n pe	r ph	ase	. A f	ield	cur	rent	of 3	30 A j	orod	uced the	
		full-load current of 2												
		1100V on open circ					-		er a	ngle	e of t	he a	liternator	71/
		when it delivers full lo	Jau a	al U.(o ia	yyin	yμ.	ı.						7M

Page 2 of 2

- 6. a) Discuss the effect of change in excitation on parallel operation of two alternators.
 - b) Two alternators working in parallel supply a lighting load of 3000KW and a motor load aggregating to 5000KW at 0.72 pf. One machine is loaded up to 5000KW at 0.8 pf lagging. What is the load and power factor of the other machine?

UNIT-IV

- 7. a) Explain the importance of 'V' and ' ' curves and with neat circuit diagram explain the experimental procedure to obtain the curves.
 - b) A 2200 v, 3-phase, star connected synchronous motor has a resistance of 0.22 per phase and a synchronous reactance of 2.4 per phase. The motor is operating with 0.6 pf leading with a line current of 180 A. Determine the value of generated EMF per phase. 7M

OR

- 8. a) Discuss the various starting methods of synchronous motor
 - b) A 2000 V, 3- phase, star connected synchronous motor has an effective resistance and synchronous reactance of 0.2 and 2.2 per phase respectively. The input is 800 kW at normal voltage and the induced line emf is 2500 V. Calculate the line current and power factor.

UNIT-V

9. a) Explain the operation and characteristics of universal motor
b) List the applications of the universal motor
OR
10. a) What is a Repulsion motor? With a connection diagram explain its operation
b) Draw the speed torque characteristics of Repulsion motor and list the applications of repulsion motor

7M

7M

7M

7M

7M

	ł	Hall Ticket Number :												
	Co	ode: 7G252								_		R-17		
	0.	III B.Tech. I Ser	meste	er Supp	olemer	ntary I	Examir	natio	ns Fe	ebruc	ary 2	022		
		Ele					: Mea		-	nts				
	M	ax. Marks: 70	(Elec	trical c	ind Eleo	ctronic	cs Engir	heerir	ng)		Tin	ne: 3 H		
		Answer any five full qu	estions	s by cho		ne ques *****	tion fro	m eac	h uni	it (5 x				
												Marks	со	Blooms Level
				l	JNIT-I									
1.	a)	Briefly explain ch	narac	teristic	s of m	neasu	ring in	strun	nen	ts?		7M	1	1
	b)	Describe how a	•				•							
		multipliers used f			-				-			7M	1	3
		for resistance of	unei			101 a	4 1011	je vu	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			7 111	I	5
2.	a)	Describe the con	struc	tional	••••	s of an	attrac	tion	tvpe	mov	rina			
	,	iron instrument	with t	he he	lp of	a nea	at diag	ram.	De	erive	the			
		expression for de				contro	ol is us	ed ar	nd c	omm	ent			•
		upon the shape					. ,				•	10M	1	3
	b)	Define limiting er error?	rors.	Derive	e the e	xpres	SION TO	or rela	ative	e iimii	ing	4M	1	2
		enor:		l	JNIT-I	I						-111	1	2
3.	a)	Describe a circu	it for				e phas	e ind	duct	ion ty	/pe			
	- /	energy meter at			•	•	•					7M	2	2
	b)	In a dynamomet	er wa	ttmete	er the i	movin	ig coil	has	500	turns	s of			
		mean diameter 3					•							
		field and the mo	•			.,	. ,							
		density produced in moving coil is	-								ent	7M	2	3
			0.00	A and	OR			3 0.0	.000			7 101	2	0
4.	a)	Explain the	spec	ial f	eature	es i	ncorpo	orate	d	in	an			
	,	electrodynamom	•				•			be us	sed			
		for low power fac	ctor a	pplica	tions?							10M	2	2
	b)	Explain about C	reepi	ng eri	or in a	single	phas	e inc	duct	ion ty	/pe			
		energy meter										4M	2	3
				l	JNIT-									
5.	a)	Draw the circuit	•			•	•							
		explain its working	-		e the s	steps	used	wher	n me	easur	ing	71/	C	C
		an unknown resi	รเลกต	с:								7M	2	2

	b)	Describe the design and constructional features used in potential transformers for reduction of ratio and phase angle errors.	7M	2	2
		OR			
6.	a)	Describe the construction and working of a coordinate type a.c. potentiometer. How is it standardized? Explain how an unknown voltage measured with it.	7M	2	2
	b)	Explain in detail the effect of opening the secondary circuit of a current transformer when the primary winding is energized?	7M	2	2
7.	a)		7M	3	2
	b)	Explain how Wien's bridge can be used for experimental determination of frequency. Derive the expression for frequency in terms of bridge parameters.	7M	3	2
		OR			
8.	a)	What are the different difficulties encountered in the measurement of high resistance? Explain how these difficulties are overcome.	7M	3	2
	b)	Derive the equation of balance for an Anderson's bridge. Draw the phasor diagram for conditions under balance.	7M	3	2
0	-)	UNIT-V			
9.	a)	What are the different types of amplifiers used for CROs? Describe the basis on which they are classified.	7M	4	2
	b)	Draw a basic circuit of a digital frequency meter using various sections. Explain the functions of each section.	7M	4	2
		OR			
10.	a)	the use of a CRO:			
		(i) Frequency (ii) Phase angle	10M	4	2
	b)	List out the advantages and disadvantages of smart energy	10101	•	£
	~)	meters.	4M	4	2
		END			

	C	ode: 7G253	R-1	7	
	C	III B.Tech. I Semester Supplementary Examinations February	2022		-
		Electrical Power Transmission			
		(Electrical and Electronics Engineering)			
			me: 3		
	β	Answer any five full questions by choosing one question from each unit (5x14	4 = 70 N	narks)	
			Marks	со	Bloom
			mano	00	Leve
		UNIT-I			
•		Develop the expression for the Inductance per unit length of an overhead line from the basics of magnetic fields.	14M	1	
		OR		•	
		Write Short notes on the following			
•	a)	Geometric Mean Distance	3M	1	
	b)	Geometric Mean Radius	2M	1	
	c)	Transposition	6M	1	
	b)	Bundling of Conductors	3M	1	
	0)		0101	1	
	a)	Derive the approximate voltage regulation expression for short transmission			
	u)	line.	8M	2	
	b)	Evaluate ABCD constants for Short Transmission line	6M	2	
	,	OR			
	a)	Discuss in detail the nominal- representation with neat circuit diagram and			
	,	phasor diagram. Derive also its performance specifications.	14M	2	
		UNIT-III			
		Determine the relation between sending end parameters and receiving end			
		parameters of a long transmission line using rigorous solution.	14M	2	
		OR			
.	a)	What is surge impedance? Define Surge Impedance loading? What is the		_	
		relation of SIL with Ferranti effect?	6M	2	
	b)	A 800KV transmission line is having per phase line inductance of 1.1mH/km			
		and per phase line capacitance of 11.68nF/km. Ignoring the length of line, what is the surge impedance loading of the line.	8M	2	
		UNIT-IV	ON	2	
,	a)	Give a mathematical analysis to show the velocity of propagation of wave			
•	u)	depends on the inductance and capacitance of the line	8M	3	
	b)	Derive the transmission and reflection coefficients for voltage and currents	-	-	
	,	of a line of impedance 'Z' is terminated by a resistor of value 'R'.	6M	3	
		OR			
	a)	Define the following i) Reflection ii) Refraction iii) Attenuation iv)Distortion	7M	3	
	b)	Explain the phenomenon of wave travelling from sending end to receiving			
		end.	7M	3	
		UNIT-V			
		Give an elaborate discussion on types of insulating materials used for UGC			
		and different varieties of Underground Cables.	14M	5	
		OR			
-	a)	Find the Voltage distribution of 5 disc insulator string and prove that voltage	~ * *		
		distribution is not uniform.	8M	4	
	b)	What is the effect of non-uniform voltage distribution on string efficiency?	CM	А	
		Explain with an illustration of 5 disc insulator string.	6M	4	