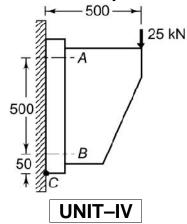
		et Number :					R-1	7
Code				1				
	111	B.Tech. Se		•	•		1/Feb 2022	
					inageme Engineering			
Max	. Mc	arks: 70	(///6			91	Time: 3	Hours
-		er all five uni	ts by choosir	ng one que: ******		ach unit (5 x		
				UNI				
1.	a)	State and de	scribe the Fay	yol's 14 princ	ciples of man	agement.		7N
	b)	Differentiate	between Cen	tralization ar	nd Decentrali	zation		7N
					OR			
2.	a)	Explain the corganization	oncept, adva	ntages, disa	dvantages a	nd application	s of line and s	taff 7N
	b)	Describe mat	trix organizati	on.				71
				UNI	[_]]			
3.	a)	Define plant	layout. Explai			ıt in detail		14N
•••	~)	•	, ,	• •	OR			
4.	a)	Identify the c	ritical path for			how how far th	ne project can	he
ч.	aj	•	•		-	st with every s		
					weeks)	Cost		0
		Activity	Preceding activity	Normal	Crash	Normal	crash	
		А	-	6	4	5000	6200	
		В	-	4	2	3000	3900	
		C	A	7	6	6500	6800	
		D E	A B,C	<u>3</u> 5	2	4000 8500	4500	14
			2,0			0000	10000	
5.	a)	Define the co	oncepts of 'me			easurement'		71
	b)	Describe Cyc	cle graph and	chronocycle	graph			71
					OR			
6.	a)	Discuss abou	ut SIMO chart	with its appl	ications.			71
	b)	What is allow	ance? Descri	ibe the types	of allowance	es		71
				UNIT	-IV			
7.	a)	Explain ABC	inventory Co	ntrol techniq	ue.			71
	b)	What are the	objectives of	Inventory co	ontrol? Expla	in		71
					OR			
8.	a)	Explain FSN	•					71
	b)	Explain HML	inventory Co					71
~	、	D		UNI	Γν			
9.	a)	Describe job	•					71
	b)	How do you	betermine the					71
10	2)	Evolain the -	and of trainin		OR			
10.	a) b)	Explain the n		• •		ovoluction		71
	b)		evaluate the a	u aiyucal me	0005 01 100	evaluation		71

	ŀ	Hall Ticket Number :															7
	С	code: 7G554								<u>]</u>		<u> </u>]		R-1	7	
III B.Tech. I Semester Supplementary Examinations February 2022																	
				,		Ma					,						
	I	Max. Marks: 70		(Me	char	nical	Eng	linee	ering)			Ti	me: 3	Hours	
Answer any five full questions by choosing one question from each unit $(5x14 = 70 \text{ Marks})$																	
							****	****							Marka	со	Blooms
								1							Marks	CO	Level
1	a)	What is meant by Or	thoad	onal		UNIT		liaue	e cuti	tina?	Exp	lain v	with ne	at			
••	u)	sketches	linog	onar	outin	ng ai		Jiiqui	000	ung.	Слр			Jui	7M	CO1	L2
	b)	Discuss the various	•••		•	•			•	meta	al cut	ting?	Expla	ain			
		how built-up edge on	a cu	itting	tool			rable							7M	CO1	L2
2	a)	What are the vario	us fo	orces	s are	OR		oetw	een	tool	and	wor	k pier	e.			
	,	Explain with neat ske									and		n pier		7M	CO1	L1
	b)	Summaries the vario	-	•				angle	e inc	ludeo	d in a	a sing	gle po	int		004	14
		cutting tool. Explain v	vitn r	ieat	sketo	cnes	<u> </u>	1							<i>1</i> IVI	CO1	L1
2		Europeire the encountier	- T					f					0		4 4 5 4	000	
3.	a)	Explain the operation	ISTU	rning	ј, га	cing, OR		mter	ng w	ntn n	eat s	Ketci	nes :		14M	CO2	L2
4.		Explain the Thread C	uttin	g Op	oerati			eat s	ketch	۱.					14M	CO2	L2
						JNIT-	_111										
5.	a)	Explain the basic Op	eratio	ons t				n a S	Shap	er.					7M	CO3	L1
		Distinguish between													7M	CO3	L2
						OR											
6.	a) b)	Explain up Milling an			-										7M	CO3	L2
	b)	Define Indexing. Exp (i) Direct Indexing (ii)				•	idexi	ng m	ietno	as.					7M	CO3	L2
		(i) 2.1000 indoxing (ii)	,			•	11/									000	
7.	a)	What is the purpose	of La	niaa		JNIT- xplai		h nea	at ske	etch					7M	CO4	L1
	b)	What is honing proce		•••	•	•					roces	ss?				CO4	L1
						OR											
8.	a)	How the Grinding whits selection.	neel	is se	electe	ed? (Dutlin	ie va	rious	fact	tors 1	that i	nfluen	се	7M	CO4	L5
	b)	Write short notes on	tvpes	s of t	oond	& de	sian	ation	of G	rindi	na w	heel			71VI 7M		L3 L2
	-,				[•]									
9.		List out the various ty	/pes	of Cl				l anv t	wo v	vith r	neat s	sketc	h		14M	CO5	L1
			•	_	ľ	OR		<u> </u>	-							-	
10.		Explain principles o		-	of 、	Jigs	and	Fixtu	ires?	Wr	ite tł	ne d	ifferen	ce			• -
		between Jigs and Fix	tures	5.			*	* *							14M	CO5	L2

	ł	Hall Ticket Number :						
	С	Code: 7G552	R-17	,				
III B.Tech. I Semester Supplementary Examinations February 2022								
		Applied Thermodynamics – II						
	Ν	(Mechanical Engineering) Nax. Marks: 70 Tir	me: 3 l	Hours				
		Answer any five full questions by choosing one question from each unit (5x14						
		*****	Maria	00	Blooms			
			Marks	CO	Level			
	-)	UNIT-I						
1.	a)	What are thermodynamic variables effecting efficiency and	сM	CO2	L1			
	հ)	output of Rankine cycle.	OIVI	002	L 1			
	b)	A steam power plant operates on a theoretical reheat cycle. Steam at boiler at 150 bar, 550°C expands through the high						
		pressure turbine. It is reheated at the constant pressure of 40						
		bar to 550°C and expands through the low pressure turbine to a						
		condenser at 0.1 bar. Draw T-S and H-S diagram. Find:						
		i) Quality of steam at turbine exhaust.						
		ii) Cycle efficiency iii) Steam rate in kg/kWh	8M	CO2	L4			
		OR						
2.	a)	Sketch and explain reheat cycle on Mollier chart	6M	CO2	L2			
	b)	A steam turbine is supplied with dry saturated steam at 25 bar.						
		The exhaust takes place at 0.2 bar. For a flow rate of 8 kg/s,						
		calculate the (i) power required to drive the pump (ii)						
		turbine power (iii) Rankine efficiency and quality of steam at the	014	000				
		end of expansion	81/1	CO2	L4			
•	、			000				
3.		What are Boiler accessories? Explain any two in detail.		CO2	L1			
	b)	Sketch and explain the working of Lamont boiler	<i>i</i> M	CO2	L3			
_		OR						
4.	a)	Give a broad classification of Boiler draught.	6M	CO2	L2			
	b)	A boiler is having a chimney of height 35m. The draught						
		produced in terms of water column is 20mm. The temperature of flue gases produced inside the chimney is 365°C and that of						
		air outside the chimney is 35°C. Determine the mass of air						
		used.	8M	CO2	L4			
		UNIT-III						
5.	a)	What is steam nozzle? Why it is convergent divergent? What						
	,	assumptions are adopted in analyzing flow through nozzle	6M	CO2	L1			
	b)	Dry saturated steam at a pressure of 8 bar enters a convergent-						
	,	divergent nozzle and leaves it at a Pressure of 1.5 bar, if the						
		flow is isentropic and the corresponding expansion index is						
		1.135, find the ratio of cross-sectional area at exit and throat for		_				
		maximum discharge	8M	CO2	L4			
		OR						

				JJJZ	
6.	a) b)	Define critical pressure ratio for the nozzle of the steam turbine. Obtain analytically its value in terms of the index of expansion. Steam at 10 bar and 0.98 dry expands through a convergent divergent nozzle to a back pressure of 0.1 bar. The discharge through the nozzle is 0.55 kg/s. The enthalpy drop used for reheating the steam by friction in the divergent portion is 10% of the overall enthalpy drop. Determine (i) the throat pressure (ii) number of nozzles required if the throat area of each nozzle is 0.5 cm2 (iii) exit diameter of each nozzle (iv) cone angle of	6M	CO2	L2
		divergent portion if its length is 10 cm. UNIT-IV	8M	CO2	L4
7.	a) b)	Compare the merits and demerits of surface condenser over jet Condenser. In surface condenser the vacuum maintained is 700 mm of Hg.	6M	CO2	L2
		The barometer reads 754 mm. If the temperature of condensate is 18°C. Determine (i) mass of air per Kg of steam (ii) Vacuum Efficiency	8M	CO2	L4
		OR			
8.	a) b)	Define the terms Vacuum efficiency and Condenser efficiency Explain briefly the following types of jet condensers:	6M	CO2	L1
	/	a) parallel-flow type b) counter flow type	8M	CO2	L2
9.	a) b)	Explain differences between impulse and reaction turbines. In a reaction turbine, the blade tips are inclined at 35 ^o and 20 ^o in the direction of motion. The guides blades are of the same shape as the moving blades, but reversed in direction. At a certain place in the turbine, the drum diameter is 1 meter and the blades are 10cm high. At this place, the steam has a pressure of 1.75 bar and dryness 0.935. If the speed of this turbine is 250 rpm and the steam passes through the blades without shock, find the mass of steam flow and power developed in the ring of	6M	CO2	L2
		moving blades.	8M	CO2	L4
10.	a)	OR Explain with the help of neat sketch a single stage impulse turbine. Also explain the pressure and velocity variation along			
	b)	the axial direction. In a simple impulse turbine the nozzles are inclined at 20 ^o to the direction of motion of the moving blades. The steam leaves the nozzle at 375m/s. The blade velocity is 165m/s. Calculate suitable inlet and outlet angles for the blades in order that the axial thrust is zero. The relative velocity of steam as it flows over the blades is reduced by 15% by friction. Also determine the power developed for a flow rate of 10kg/s.		CO2 CO2	L2 L4
		END	OIVI	002	L4

Code: 7G552


Hall 1	Ticket Number :			
Code	: 7G555	R-17		
	III B.Tech. I Semester Supplementary Examinations Februa	ry 202	2	
	Design of Machine Elements-I (Mechanical Engineering)			
	ax. Marks: 70		3 Hour	S
A	nswer any <i>five full</i> questions by choosing one question from each unit (5 x *******	14 = 70	Marks)	
		Marks	со	Blooms Level
	UNIT–I			
1. a)	Explain the design procedure of machine elements.	8M	CO1	L2
b)	Discuss the stress and stain relation. Draw a neat sketch of stress-strain Diagram and explain various stress points. OR	6M	CO1	L2
2.	A cylindrical shaft made of steel of yield strength 700 MPa is subjected to static loads consisting of bending moment 10 kN-m and a torsional moment 30 kN-m. Determine the diameter of the shaft using two different theories of failure, and assuming a factor of safety of 2. Take $E = 210$ GPa			
	and poisson's ratio = 0.25 .	14M	CO2	L3
2 0)	UNIT-II			
э. а)	What are the principal causes of stress concentration? Explain with suitable sketches?	7M	CO2	L1,L2
b)	Write Soderberg's equation and state its application to different type of loadings.	7M	CO2	L1
4	OR A machine member is made of plain corbon stack of			
4.	A machine member is made of plain carbon steel of ultimate strength 650 N/mm ² and endurance limit of 300N/mm ² . The member is subjected to a fluctuating torsional moment which varies from -200 Nm to 400 Nm. Design the member using (i) modified Goodman's equation			
	and (ii) Soderberg equation.	14M	CO2	L3
	UNIT-III			
5. a)	What are the advantages and disadvantages of welded joints over riveted joints?	7M	CO3	L3
b)	A plate 100 mm wide and10 mm thick is to be welded to another plate by means of double parallel fillets. The plates are subjected to a static load of 80 kN. Find the length of weld if the permissible shear stress in the weld			
	does not exceed 55 MPa.	7M	CO3	L2
	OR			

14M CO3

L4

L3

6. A wall bracket is attached to the wall by means of four identical bolts, two at A and two at B, as shown in Fig. Assuming that the bracket is held against the wall and prevented from tipping about the point C by all four bolts and using an allowable tensile stress in the bolts as 35N/mm2, determine the size of the bolts on the basis of maximum principal stress theory.

With simple sketch discuss the design procedure of 7. Socket and spigot joint. 14M CO4 L3 OR 8. a) Design a knuckle joint to transmit 150 kN. The design stresses may be taken as 75 MPa in tension, 60 MPa in shear and 150 MPa in compression. 8M CO4 L1 b) Draw neat sketches of different types of keys and state their applications. 6M CO4 L1 UNIT-V 9. a). Explain briefly a design of shafts subjected to combined bending and torsion. 7M CO5 L2 b). A shaft is required to transmit 1 MW power at 240 rpm. The shaft must not twist more than 1° on a length of 15 diameters. If the modulus of rigidity for material of the

diameters. If the modulus of rigidity for material of the shaft is 80 GPa, find the diameter of the shaft and shear

OR

10. Design a muff coupling which is used to connect two steel shafts transmitting 40 KW at 350 r.p.m. The material for the shafts and key is plain carbon steel for which allowable shear and crushing stresses may be taken as 40 MPa and 80 MPa respectively. The material for the muff is cast iron for which the allowable shear stress may be assumed as 15 MPa.

stress induced.

7M CO5

Hall Ticket Number :]
Code: 7G533	R-17
III B.Tech. I Semester Supplementary Examinations F Dynamics of Machinery (Mechanical Engineering) Max. Marks: 70 Answer any five full questions by choosing one question from each	Time: 3 Hours
	Marks CO Blooms Level
 UNIT-I 1. a) State the laws of static friction. b) A body, resting on a rough horizontal plane required 	4M CO1 L1 a pull
of 180 N inclined at 30° to the plane just to move it. I found that a push of 220 N inclined at 30° to the plan moved the body. Determine the weight of the body ar coefficient of friction.	lt was ne just
OR	
2. a) Explain the friction circle and friction axis.	7M L2
b) A 150 mm diameter valve, against which a steam pre of 2 MN/m2 is acting, is closed by means of a se threaded screw 50 mm in external diameter with 6 mm If the coefficient of friction is 0.12 ; find the torque rec	quare pitch.
to turn the handle.	7M CO1 L3
UNIT-II	
 3. a) Describe the types of brakes b) A bicycle and rider of mass 100 kg are travelling at the of 16 km/h on a level road. A brake is applied to the wheel which is 0.9 m in diameter and this is the resistance acting. How far will the bicycle travel and many turns will it make before it comes to rest? 	e rear e only d how
pressure applied on the brake is 100 N and $\mu = 0.05$.	8M CO2 L3
OR 4. a) Describe the construction and operation of a Prony	brake
dynamometer	8M CO2 L1,L5
 b) In a laboratory experiment, the following data were rec with rope brake: Diameter of the flywheel 1.2 m; diame the rope 12.5 mm; speed of the engine 200 r.p.m.; load on the brake 600 N; spring balance reading 15 	eter of dead
Evaluate the brake power of the engine.	6M CO2 L6

	UNIT–III	Code	e: 7G533	
5. a)	State the different types of governors.	6M	CO3	L1
-	Evaluate the vertical height of a Watt governor when it rotates at 60 r.p.m. Also find the change in vertical height when its speed increases to 61 r.p.m.		CO3	L6
	OR			
6. a)	Explain the turning moment diagram of a four stroke cycle internal combustion engine.	7M	CO3	L2
b)	The mass of flywheel of an engine is 6.5 tonnes and the radius of gyration is 1.8 meters. It is found from the turning moment diagram that the fluctuation of energy is 56 kN-m. If the mean speed of the engine is 120 r.p.m., find the maximum and minimum speeds.	7M	CO3	L3
	UNIT–IV			
7.	Four masses m1, m2, m3 and m4 are 200 kg, 300 kg, 240 kg and 260 kg respectively. The corresponding radii of rotation are 0.2 m, 0.15 m, 0.25 m and 0.3 m respectively and the angles between successive masses are 45°, 75° and 135°. Find the position and magnitude of the balance mass required, if its radius of rotation is 0.2 m.		CO4	L3
	OR			
8.	Describe the following: (a) Variation is tractive force (b) Swaying couple (c) Hammer blow. UNIT–V	14M	CO4	L1
9. a)		7M	CO5	L2
b)	Develop an expression for free longitudinal vibrations using energy method.	7M	CO5	L5
	OR			
10.	Describe the Free Torsional Vibrations of a Single Rotor System and Two Rotor System ***	14M	CO5	L1