Code: 7G553

III B.Tech. I Semester Supplementary Examinations Nov/Dec 2022

Dynamics of Machinery
 (Mechanical Engineering)

Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)

UNIT-I

1. Derive an expression for frictional torque required for flat pivot bearing considering i) Uniform Pressure theory ii) Uniform wear theory.

OR

2. The mean diameter of the screw jack having pitch of 10 mm is 50 mm . A load of 20 kN is lifted through a distance of 170 mm . Find the work done in lifting the load and efficiency of the screw jack when 1. The load rotates with the screw, and 2. The load rests on the loose head which does not rotate with the screw. The external and internal diameter of the bearing surface of the loose head are 60 mm and 10 mm respectively. The coefficient of friction for the screw as well as the bearing surface may be taken as 0.08

UNIT-II

3. a) Explain about the various planes and axes of gyroscopic couple
b) An airplane makes a complete half circle of 50 meters radius, towards left, when flying at 200 km per hr. The rotary engine and the propeller of the plane has a mass of 400 kg and a radius of gyration of 0.3 m . The engine rotates at 2400 r.p.m. clockwise when viewed from the rear. Find the gyroscopic couple on the aircraft and state its effect on it

OR

4. The turbine rotor of a ship has a mass of 3500 kg . It has a radius of gyration of 0.45 m and a speed of 3000 r.p.m. clockwise when looking from stern. Determine the gyroscopic couple and its effect upon the ship: 1. when the ship is steering to the left on a curve of 100 m radius at a speed of $36 \mathrm{~km} / \mathrm{h}$. 2. When the ship is pitching in a simple harmonic motion, the bow falling with its maximum velocity. The period of pitching is 40 seconds and the total angular displacement between the two extreme positions of pitching is 12 degrees

UNIT-III

5. A loaded Porter governor has four links each 250 mm long, two revolving masses each of 3 kg and a central dead weight of mass 20 kg . All the links are attached to respective sleeves at radial distances of 40 mm from the axis of rotation. The masses revolve at a radius of 150 mm at minimum speed and at a radius of 200 mm at maximum speed. Determine the range of speed.

OR

6. The turning moment diagram for a multicylinder engine has been drawn to a scale $1 \mathrm{~mm}=600 \mathrm{~N}-\mathrm{m}$ vertically and $1 \mathrm{~mm}=3^{\circ}$ horizontally. The intercepted areas between the output torque curve and the mean resistance line, taken in order from one end, are as follows: $+52,-124$, $+92,-140,+85,-72$ and $+107 \mathrm{~mm}^{2}$, when the engine is running at a speed of 600 r.p.m. If the total fluctuation of speed is not to exceed $\pm 1.5 \%$ of the mean, find the necessary mass of the flywheel of radius 0.5 m

UNIT-IV

7. Explain the 'direct and reverse crank' method for determining unbalanced forces in radial engines

14M 4 L2

OR

8. A shaft carries four masses A, B, C and D of magnitude $200 \mathrm{~kg}, 300 \mathrm{~kg}, 400 \mathrm{~kg}$ and 200 kg respectively and revolving at radii $80 \mathrm{~mm}, 70 \mathrm{~mm}, 60 \mathrm{~mm}$ and 80 mm in planes measured from A at $300 \mathrm{~mm}, 400 \mathrm{~mm}$ and 700 mm . The angles between the cranks measured anticlockwise are A to B 45°, B to C 70° and C to D 120°. The balancing masses are to be placed in planes X and Y . The distance between the planes A and X is 100 mm , between X and Y is 400 mm and between Y and D is 200 mm . If the balancing masses revolve at a radius of 100 mm , find their magnitudes and angular positions

UNIT-V

9. Develop an expression for Natural Frequency of Free Transverse Vibrations of a Shaft Subjected to a Number of Point Loads by Dunkerly's method.

OR

10. A shaft of length 0.75 m , supported freely at the ends, is carrying a body of mass 90 kg at 0.25 m from one end. Find the natural frequency of transverse vibration. Assume E $=200 \mathrm{GN} / \mathrm{m} 2$ and shaft diameter $=50 \mathrm{~mm}$

Industrial Management

(Mechanical Engineering)
Max. Marks: 70
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

Marks CO BL

UNIT-I

1. a) Explain the concept, and applications of committee organization
b) Describe the functional organization and applications of functional organization

OR

2. a) Explain the concept, advantages, disadvantages and applications of line and staff organization
b) Describe matrix organization.

UNIT-II

3. Define plant layout. Explain the types of Plant layout in detail

OR

4. a) Discuss the factors affecting plant location
b) Suggest suitable layout to establish a cement industry

UNIT-III

5. a) Define time study and explain its objectives
b) Explain various steps involved in time study

OR

6. a) Describe the various methods involved for Performance rating in Work study.
b) Discuss the procedure of Method study

UNIT-IV
7. a) Explain the periodical review inventory control system
b) A manufacturer has to supply his customers 3600 units of its products per year. Inventory carrying cost amounts Rs 1.2 per unit per annum. The set up cost per run is Rs 80 . Determine i)Economic order quantity ii)Number of orders per year

OR

8. a) Describe the costs associated with the inventories
b) A manufacturing company places a annual order of 48,000 units at a price of Rs 20 per unit. Its carrying cost is 15% of unit price and the order cost is Rs 12 per order. Determine i)Economic order quantity ii)Number of orders per year iii)Time between orders

UNIT-V

9. a) Describe job analysis
b) How do you determine the labour turnover rate?

OR
10. a) Is personnel manager is Line or staff manager? support your answer with an example

7M CO5
L2
$7 \mathrm{M} \quad \mathrm{CO} \quad \mathrm{L} 2$
b) Explain off the job training and on the job training methods

7M CO1 L1

7M CO1 L1

7M CO1 L1
7M CO1 L1

14M CO2 L1

7 M CO2 L1
7 M CO2 L2

7 M CO3 L1
7 M CO3 L2

7 M CO3 L1
7M CO3 L1

7M CO4 L1

7M CO4 L1

7M CO4 L2

7M CO4 L2

7 M CO5 L2
7M CO5 L2

\square

Code: 7G552

III B.Tech. I Semester Supplementary Examinations Nov/Dec 2022
Applied Thermodynamics-II
(Mechanical Engineering)

Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

OR

4. Derive an expression for natural draught and maximum discharge rate of gases through the chimney for a given height of chimney, clearly stating the assumptions made.

14 M CO 2

UNIT-III

5. a) Describe the function of nozzle \& discuss various types of nozzles.

7M CO3
7M CO3
b) Discuss about super saturation flow of steam in nozzles.

OR
6. a) In a steam nozzle, steam expands from 4 bar to 1 bar. The initial velocity of steam is $60 \mathrm{~m} / \mathrm{s}$ and the initial temperature is $200^{\circ} \mathrm{C}$. Determine the exit velocity if the nozzle efficiency is 92%.

10M CO3
b) Define metastable state.

4 M CO

UNIT-IV

7. a) With the help of a neat sketch explain the working principle of Barometric jet condenser.

8M CO4
b) Differentiate jet condensers with surface condensers.

6 M CO

OR

8. a) Steam enters a condenser at $36^{\circ} \mathrm{C}$ and with barometer reading 760 mm of Hg . If vacuum of 695 mm of Hg . is produced, find the vacuum efficiency?

8 M	CO 4	L 3
6 M	CO 4	L 2

b) Explain parallel flow jet condenser and explain its working principle.

6 M CO

UNIT-V

9. a) Explain velocity compounding in steam turbines with neat sketch

8M CO5
b) Compare impulse turbine with reaction turbine.
$6 \mathrm{M} \mathrm{CO5}$

OR

10. Steam leaves the nozzle of a single stage impulse turbine at $850 \mathrm{~m} / \mathrm{s}$. The nozzle angle is 18° and the blade angles are 29° at the inlet and outlet. The friction coefficient is 0.9 . Calculate blade velocity and steam mass flow rate in $\mathrm{kg} / \mathrm{hr}$ to develop 300 W power.

14M CO5

Hall Ticket Number :										

Code: 7G555

III B.Tech. I Semester Supplementary Examinations Nov/Dec 2022

Design of Machine Elements-I

(Mechanical Engineering)
Time: 3 Hours
Max. Marks: 70
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) What are the manufacturing considerations to be considered by design?
b) An unknown weight falls through 10 mm on a collar rigidly attached to the lower end of a vertical bar 3 m long and $600 \mathrm{~mm}^{2}$ in section. If the maximum instantaneous extension is known to be 2 mm , what is the corresponding stress and the value of unknown weight? Take $\mathrm{E}=200 \mathrm{kN} / \mathrm{mm}^{2}$.

OR

2. a) Enumerate any four most commonly used engineering materials and state at least one important property and one application of each.
b) Find out the numbers of R10 basic series from 1 to 10 .

UNIT-II

3. a) Define endurance limit? Discuss the factors which affect the endurance limit of the material.
b) Determine the size of a piston rod subjected to a total load having cyclic fluctuation from 150 kN (tension) to 25 kN (compression). The endurance limit is 360 MPa and yield strength is 400 MPa . Take factor of safety $=1.5$; surface finish factor $=0.88$ and stress concentration factor $=2.25$.

OR

4. a) Describe Soderberg's criteria And derive the equation for designing of machine members subjected to dynamic load.
b) Determine the diameter of a circular rod made of ductile material with a fatigue strength (complete stress reversal), $\sigma_{e}=265 \mathrm{MPa}$ and a tensile yield strength of 350 MPa . The member is subjected to a varying axial load from $\mathrm{W}_{\text {min }}=-300 \times 10^{3} \mathrm{~N}$ to $\mathrm{W}_{\text {max }}=700 \times 10^{3} \mathrm{~N}$ and has a stress concentration factor $=1.8$. Use factor of safety as 2.0.

UNIT-III

5. a) List out the advantages and disadvantages of screw joints.
b) An electric motor weighing 10 kN is lifted by means of an eye bolt. The eye bolt is screwed into the frame of the motor. The eye bolt has coarse threads. It is made of plain carbon steel $30 \mathrm{C} 8\left(\mathrm{~S}_{\mathrm{yt}}=400 \mathrm{~N} / \mathrm{mm}^{2}\right)$ and the factor of safety is 6 . Determine the size of the bolt.

OR

6. a) A bracket is bolted to a column by 6 bolts of equal size as shown in Fig. It carries a load of 50 kN at a distance of 150 mm from the centre of column. If the maximum stress in the bolts is to be limited to 150 MPa , determine the diameter of bolt.

7. a) Design a sleeve and cotter joint to resist a tensile load of 60 kN . All parts of the joint are made of the same material with the following allowable stresses: $\sigma_{t}=60 \mathrm{MPa} ; \mathrm{T}=70 \mathrm{MPa}$; and $\sigma_{\mathrm{c}}=125 \mathrm{MPa}$

OR

8. a) What are the applications of knuckle joint?
b) Design a knuckle joint to transmit 140 kN , with permissible stresses in tension; shear and compression are 75 Mpa ; 60 Mpa and 150 Mpa respectively.

UNIT-V

9. a) How the shaft is designed when it is subjected to twisting moment and bending moment?
b) A shaft is transmitting 100 kW at 180 r.p.m. If the allowable shear stress in the material is 60 MPa , find the suitable diameter for the shaft. The shaft is not to twist more than 1° in a length of 3 m . Take $\mathrm{C}=80 \mathrm{GPa}$.

OR

10. a) Classify the shaft coupling.
b) Design of a muff coupling which is used to connect two steel shafts transmitting 40 kW at $350 \mathrm{r} . \mathrm{p} . \mathrm{m}$. The material for the shafts and key is plain carbon steel for which allowable shear and crushing stresses may be taken as 40 MPa and 80 MPa respectively. The material for the muff is cast iron for which the allowable shear stress may be assumed as 15 MPa .
