Hall Ticket Number :												
Code: 7G353								R-17				

III B.Tech. I Semester Supplementary Examinations March/April 2023

Analog & Digital Integrated Circuits Applications

(Electronics and Communication Engineering)

		(Electronics and Communication Engineering)			
			: 3 Ho		
	F	Answer any five full questions by choosing one question from each unit $(5x14 = 7)$	0 Marl	(S)	
		<u> </u>	Marks	СО	BL
		UNIT-I	Wanto	00	DL
1.		Discuss about Inverting & Non- Inverting Op-Amp circuits and derive the expression for the gain.	14M	CO1	L2
		OR			
2.		Discuss the characteristics of instrumentation amplifier with the circuit and derive the expression of voltage gain.	14M	CO1	L2
		UNIT-II			
2		\ <u></u>			
3.		Explain the operation of mono stable multi vibrator using 555 timers and derive the expression of time delay	14M	CO1	L2
		OR			
4.	a)	Discuss about advantages and disadvantages of Flash ADC over successive approximation type ADC	6M	CO1	L2
	b)	Summarize the working principle of R-2R ladder DAC	8M	CO1	L2
5.		UNIT-III Analyze the working of CMOS Inverter and its characteristics. OR	14M	CO2	L4
6.		Discuss about the CMOS Dynamic Electrical Behavior.	14M	CO2	L3
7		UNIT-IV Explain with part structure of SV2 appeder with the VIIDL program for standard			
7.		Explain with neat structure of 8X3 encoder with the VHDL program for standard IC 74x148.	14M	CO3	L2
		OR			
8.	a)	List out the advantages of Combinational Circuits	6M	CO2	L1
	b)	Design Full adder using half adders.	8M	CO2	L6
9.		UNIT-V Apply VHDL methodology to D flip-flop and SR flip-flop.	14M	CO3	L3
		OR			
10.	a)	Evaluate the Characteristic equations of SR and JK Flip-Flops.	7M	CO3	L5
	b)	Solve JK flip-flop into D Flip-Flop.	8M	CO3	L3

Page 1 of 1