\square

Code: 7G353

R-17

III B.Tech. I Semester Supplementary Examinations August 2021

Analog \& Digital Integrated Circuit Applications

(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

Marks co | Blooms |
| :---: |
| Level |

UNIT-I

1. Discuss the operation of Op-Amp block diagram and its characteristics.
14M CO1
OR
2. a) List the types of ICs and Interpret circuit complexity.
7M CO1
b) Identify the applications of Opamp and its advantages.
7M CO1

UNIT-II

3. Explain the operation of mono stable multi vibrator using 555 timers. Derive the expression of time delay of mono stable multi vibrator with 555 timers.
14M CO1
OR
4. a) Analyze the basic principle of successive approximation type ADC
8M CO1
L4
b) Restate the operation of Zero Cross Detector and Window Detector.
$6 \mathrm{M} \mathrm{CO1}$
UNIT-III
5. Analyze the operation of CMOS Inverter and its characteristics.
14M CO2
OR
6. a) Apply NAND circuit with TTL technology.
10M CO2
b) What are the advantages and disadvantages of above?
4M CO2

UNIT-IV

7. Define encoder and explain with neat structure of 8×3 encoder. Write the VHDL program for standard IC 74×148.
14M CO3

OR

8. Discuss about functions and libraries in VHDL with an examples.
14M CO3

UNIT-V

9. Explain the operation of Universal Shift Register with VHDL Program.
14M CO3

OR

10. Write a VHDL program for D flip-flop and S R flip-flop.
14M CO3

Code: 7G355

III B.Tech. I Semester Supplementary Examinations August 2021

Antennas and Wave Propagation

(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Define Reciprocity Theorem as applicable to antennas. State the antenna theorems and relate them to reciprocity theorem.
b) The maximum radiation intensity of a 90% efficiency antenna is $200 \mathrm{~mW} / \mathrm{st}$. Find the directivity and gain (dimensionless and in dB)
i) The input power is 125.66 mW
ii) Radiated power is 125.66 mW

OR

2. a) Derive Radiation resistance of half dipole antenna.
b) A voltage source of amplitude $\mathrm{V}=(50+40 \mathrm{j}) \mathrm{V}$ with source impedance of 50 is connected to an antenna having a radiating resistance Rrad=70 , loss resistance Rloss=1 and reactance of j25. Calculate
(i) Real power delivered by the voltage source.
(ii) Real input power to the antenna
(iii) Power radiated by the antenna and
(iv) Power dissipated in the antenna. (CO3)

UNIT-II

3. a) Find the radiation pattern and phase pattern of 10 -element isotropic linear array with an element spacing $d==\lambda / 2$ working at a frequency of 12 MHz when it is functioning in broadside mode and endfire mode?
b) Discuss the application of linear array. Explain the advantages and disadvantage of linear array.

OR

4. a) What is a parasitic element? Explain when the parasitic element acts as a reflector and director with the help of proper diagram.
b) Explain the characteristics of folded dipole.

UNIT-III

5. Explain the design parameter of helical antenna with practical design considerations; also write the expression for the HPBW, BWFN and axial ratio.

OR

6. a) Give various causes of side lobes in the pattern of the dish antennas.
b) Write short notes on
a. Dielectric Lenses
b. Zoning
7. What is the field strength due to ground wave according to Sommerfeld? What are the factors that are incorporated into this formula?

OR
8. a) Describe the phenomenon of ground wave propagation.
b) A VHF communication link is established with 35 watt transmitter at 90 MHz . Determine
a) The distance up to which LOS communication may be possible if the height of the transmitting and receiving antenna are 40 m and 25 m respectively.
b) Evaluate field strength at the receiver end.

UNIT-V

9. a) Discuss about virtual ray path, critical frequency, MUF, LUF, OF, Virtual height and Skip distance.9M
b) Discuss the structure of ionosphere. 5 M

OR

10. a) Prove that refraction index of ionosphere is

$$
\mathrm{n}=\left(1-\frac{81 \mathrm{~N}}{\mathrm{f}^{2}}\right)^{1 / 2}
$$8M

b) Write short notes on Impact of Solar Activity and Multi hop propagation. 6M

III B.Tech. I Semester Supplementary Examinations August 2021

Computer System Architecture

Max. Marks: 70

(Electronics and Communication Engineering)

Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

III B.Tech. I Semester Supplementary Examinations August 2021

Control Systems

(Electronics and Communication Engineering)

Max. Marks: 70

Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

Marks

1. a) Classify various types of Control Systems.
b) Find the Transfer function of signal flow graph given below by using Mason's gain formula.

OR
2. For the system shown in the below figure obtain the transfer function using block diagram Reduction technique.

14M CO1

UNIT-II

3. For a unity feedback control system, the open loop transfer function $G(s)=10(s+2) / s 2(s+1)$. Find:
i) position, velocity and acceleration error constants.
ii) Steady state error when the input $R(s)=(3 / s)-\left(2 / s^{2}\right)+\left(1 / 3 s^{3}\right)$.

OR

4. a) Explain the Routh-Hurwitz criterion to determine the stability of the system.

6M CO2
b) Examine the characteristic equation $s^{4}+2 s^{3}+s^{2}+4 s+2=0$ for stability.

8M CO2

UNIT-III

5. a) A system has one open loop pole \& two closed loop poles in Right Half of s - plane. Show that the Nyquist plot encircles the $(-1+j 0)$ point once in clockwise direction.

7M CO3
b) Addition of poles to the loop transfer function reduces the closed loop stability of the system. Justify by Nyquist plots.

OR

6. a) Explain the term frequency response analysis.
b) Show that in Bode magnitude plot the slope corresponding to a quadratic factor is $-40 \mathrm{~dB} / \mathrm{dec}$.
$4 \mathrm{M} \mathrm{CO3}$
c Explain with the help of examples
b) Minimum phase function
ii) Non minimum phase function
iii) All pass function

6M CO3

UNIT-IV

7. Design a Lag compensator for the unity feedback system whose closed loop transfer function $\mathrm{C}(\mathrm{s}) / \mathrm{R}(\mathrm{s})=\mathrm{K} /(\mathrm{s}(\mathrm{s}+4)(\mathrm{s}+80)+\mathrm{K})$ is to meet the following specifications P.M $\geq 33{ }^{\circ}$. And $\mathrm{Kv} \geq 30$.

14M CO4

OR

8. Distinguish LEAD and LAG compensators.

14M CO4

UNIT-V

9. a) Obtain the state-space representation of the transfer function system in the controllable canonical form.

$$
G(s)=\frac{s^{2}+3 s+3}{s^{2}+2 s+1}
$$

b) Consider the RLC network shown in figure. Write the state variable representation.

OR
10. a) List the properties of state transition matrix.
b) Construct the state model for a system characterized by the differential equation.

$$
\mathrm{Y}^{\prime \prime}+5 y^{\circ}+6 y=u . \quad 8 \mathrm{M} \quad \operatorname{co5} \quad \mathrm{~L} 5
$$

\square
Code: 7G351
III B.Tech. I Semester Supplementary Examinations August 2021

Digital Communication

(Electronics and Communication Engineering)

Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

```
                *********
```


UNIT-I

1. a) Explain about the noise in PCM systems.
b) With a neat sketch describe DPCM concept.

Marks CO | Blooms |
| :---: |
| Level |

OR

2. a) What are the drawbacks of Delta Modulation (DM)? Describe how these draw backs are eliminated in Adaptive Delta Modulation (ADM).
b) Give the comparison of DPCM and DM with standard PCM.

UNIT-II

3. a) Define and draw the waveforms of ASK, FSK, PSK and DPSK for the data sequence 110100110111.
b) Compare the various digital modulation schemes
7M 1 \& 3 L1

OR
4. a) Draw and explain the operating principle of ASK Modulator.
b) Describe the BPSK modulation technique with the help of a neat diagram.

7 M	$1 \& 3$	L1

UNIT-III

5. a) Explain the concept of amount of information and its properties.
b) Write a short note on Mutual information and Self information.

OR

6. a) Derive an expression for Shannon- Hartley theorem
b) Explain the following
i) Bandwidth and S/N tradeoff
UNIT-IV
ii) Channel Capacity

7M 1\& L 2
7. a) Apply Shannon-Fano coding procedure for the message ensemble and find the efficiency of the channel $\mathrm{P}=[0.4,0.2,0.12,0.08,0.08,0.08,0.04]$

7M 2\&3 L3
b) Give the matrix description for linear block codes.
7M 2\& \quad L1

OR

8. a) Explain the concept of Lempel-Ziv Code.
7M 2\& L 2
b) Explain about Error detection and Correction capabilities of Hamming codes.
7M 2\&3 L2

UNIT-V

9. What is the use of syndrome? Draw the ($\mathrm{n}-\mathrm{k}$) syndrome calculation circuit for (n , k) cyclic code? Explain.

OR

10. Draw the State diagram, Tree diagram and Trellis diagram for $\mathrm{k}=3$, rate $=1 / 3$ code generated by $\mathrm{g} 1(\mathrm{x})=1+\mathrm{x}^{2}, \mathrm{~g} 2(\mathrm{x})=1+\mathrm{x}$, and $\mathrm{g} 3(\mathrm{x})=1+\mathrm{x}+\mathrm{x}^{2}$.

Code: 7G354

III B.Tech. I Semester Supplementary Examinations August 2021

Electronic Measurements and Instrumentation

(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

OR
2. a) Explain the working principle of D'Arsonval galvanometer with the help of torque equation

6M C01
b) Explain about the Dual Slope Integrating type Digital Voltmeter.

8M CO1
UNIT-II
3. a) Discuss the basic principle of AF wave analyzer with neat sketch. L2
b) Explain the working of heterodyne wave analyzer with neat diagram.

6M CO2
8M CO2
OR
4. a) Discuss the basic principle of Sweep frequency generator with neat sketch.

6M CO2
8M CO2

UNIT-III

5. a) Explain the Basic principle of Wheat stone Bridge and derive the expression for unknown resistance.

6M CO3
b) Explain Schering bridge with neat diagram and derive the expression for unknown Inductance.

8M CO3

OR

6. a) Explain the CRT and its applications.
b) Discuss the dual trace oscilloscope with suitable examples

UNIT-IV
7. a) Explain the Basic principle of kelvin Bridge and derive the expression for unknown resistance.

6M CO4
b) Explain Wein bridge with neat diagram and derive the expression for unknown
parameters'.

8M CO4

OR

8. a) Explain the principle of operation and construction of Q-meter.

6 M CO
b) Prepare the principle of operation and construction of AC bridge.

8M CO4

UNIT-V

9. a) Define a transducer. Explain the classification of transducers.

6M co5
b) Explain the Data Acquisition system with neat sketch.

8M CO5
10. a) Explain working of strain gauge with neat sketch.

6M Co5
b) Describe the Strip chart recorder with neat diagram.

8M CO5

