Answer any five full questions by choosing one question from each unit (5x14 : ************************************	R-1	7	
Analog & Digital Integrated Circuit Applications (Electronics and Communication Engineering) Max. Marks: 70 Tr Answer any five full questions by choosing one question from each unit (5x14 * ********* UNIT-I Discuss the operation of Op-Amp block diagram and its characteristics. OR a) List the types of ICs and Interpret circuit complexity. b) Identify the applications of Opamp and its advantages. UNIT-II Explain the operation of mono stable multi vibrator using 555 timers. Derive the expression of time delay of mono stable multi vibrator with 555 timers. OR a) Analyze the basic principle of successive approximation type ADC b) Restate the operation of Zero Cross Detector and Window Detector. UNIT-III Analyze the operation of CMOS Inverter and its characteristics. OR Analyze the advantages and disadvantages of above? UNIT-IV Define encoder and explain with neat structure of 8X3 encoder. Write the VHDL program for standard IC 74x148. OR Discuss about functions and libraries in VHDL with an examples.	2021		
Max. Marks: 70 Answer any five full questions by choosing one question from each unit (5x14 : ********* UNIT-I Discuss the operation of Op-Amp block diagram and its characteristics. OR 2. a) List the types of ICs and Interpret circuit complexity. b) Identify the applications of Opamp and its advantages. UNIT-II Explain the operation of mono stable multi vibrator using 555 timers. Derive the expression of time delay of mono stable multi vibrator with 555 timers. OR 4. a) Analyze the basic principle of successive approximation type ADC b) Restate the operation of Zero Cross Detector and Window Detector. UNIT-III 5. Analyze the operation of CMOS Inverter and its characteristics. OR 5. a) Apply NAND circuit with TTL technology. b) What are the advantages and disadvantages of above? UNIT-IV 7. Define encoder and explain with neat structure of 8X3 encoder. Write the VHDL program for standard IC 74x148. OR 6. Discuss about functions and libraries in VHDL with an examples.			
Answer any five full questions by choosing one question from each unit (5x14 : ******** UNIT-I Discuss the operation of Op-Amp block diagram and its characteristics. OR a) List the types of ICs and Interpret circuit complexity. b) Identify the applications of Opamp and its advantages. UNIT-II Explain the operation of mono stable multi vibrator using 555 timers. Derive the expression of time delay of mono stable multi vibrator with 555 timers. OR a) Analyze the basic principle of successive approximation type ADC b) Restate the operation of Zero Cross Detector and Window Detector. OR a) Analyze the operation of CMOS Inverter and its characteristics. OR b) What are the advantages and disadvantages of above? UNIT-IV C) Define encoder and explain with neat structure of 8X3 encoder. Write the VHDL program for standard IC 74x148. OR b) Discuss about functions and libraries in VHDL with an examples.			
UNIT-I Discuss the operation of Op-Amp block diagram and its characteristics. <i>OR</i> 2. a) List the types of ICs and Interpret circuit complexity. b) Identify the applications of Opamp and its advantages. UNIT-II 3. Explain the operation of mono stable multi vibrator using 555 timers. Derive the expression of time delay of mono stable multi vibrator with 555 timers. <i>OR</i> 4. a) Analyze the basic principle of successive approximation type ADC b) Restate the operation of Zero Cross Detector and Window Detector. <i>OR</i> 5. Analyze the operation of CMOS Inverter and its characteristics. <i>OR</i> 5. a) Apply NAND circuit with TTL technology. b) What are the advantages and disadvantages of above? 7. Define encoder and explain with neat structure of 8X3 encoder. Write the VHDL program for standard IC 74x148. <i>OR</i> 8. Discuss about functions and libraries in VHDL with an examples.	ime: 3 = 70 /		-
 Discuss the operation of Op-Amp block diagram and its characteristics. OR a) List the types of ICs and Interpret circuit complexity. b) Identify the applications of Opamp and its advantages. UNIT-II Explain the operation of mono stable multi vibrator using 555 timers. Derive the expression of time delay of mono stable multi vibrator with 555 timers. OR 4. a) Analyze the basic principle of successive approximation type ADC b) Restate the operation of CMOS Inverter and its characteristics. OR 3. a) Apply NAND circuit with TTL technology. b) What are the advantages and disadvantages of above? VINIT-IV 7. Define encoder and explain with neat structure of 8X3 encoder. Write the VHDL program for standard IC 74x148. OR B. Discuss about functions and libraries in VHDL with an examples. 	-701	VICING)
 Discuss the operation of Op-Amp block diagram and its characteristics. OR a) List the types of ICs and Interpret circuit complexity. b) Identify the applications of Opamp and its advantages. UNIT-II Explain the operation of mono stable multi vibrator using 555 timers. Derive the expression of time delay of mono stable multi vibrator with 555 timers. OR 4. a) Analyze the basic principle of successive approximation type ADC b) Restate the operation of CMOS Inverter and its characteristics. OR 3. a) Apply NAND circuit with TTL technology. b) What are the advantages and disadvantages of above? VINIT-IV 7. Define encoder and explain with neat structure of 8X3 encoder. Write the VHDL program for standard IC 74x148. OR B. Discuss about functions and libraries in VHDL with an examples. 	Marks	со	Bloor Leve
 Discuss the operation of Op-Amp block diagram and its characteristics. OR a) List the types of ICs and Interpret circuit complexity. b) Identify the applications of Opamp and its advantages. UNIT-II Explain the operation of mono stable multi vibrator using 555 timers. Derive the expression of time delay of mono stable multi vibrator with 555 timers. OR a) Analyze the basic principle of successive approximation type ADC b) Restate the operation of Zero Cross Detector and Window Detector. OR a) Analyze the operation of CMOS Inverter and its characteristics. OR a) Apply NAND circuit with TTL technology. b) What are the advantages and disadvantages of above? UNIT-IV Define encoder and explain with neat structure of 8X3 encoder. Write the VHDL program for standard IC 74x148. OR Biscuss about functions and libraries in VHDL with an examples. 			201
 a) List the types of ICs and Interpret circuit complexity. b) Identify the applications of Opamp and its advantages. UNIT-II Explain the operation of mono stable multi vibrator using 555 timers. Derive the expression of time delay of mono stable multi vibrator with 555 timers. OR Analyze the basic principle of successive approximation type ADC b) Restate the operation of Zero Cross Detector and Window Detector. UNIT-III Analyze the operation of CMOS Inverter and its characteristics. OR a) Apply NAND circuit with TTL technology. b) What are the advantages and disadvantages of above? UNIT-IV Define encoder and explain with neat structure of 8X3 encoder. Write the VHDL program for standard IC 74x148. OR B) Discuss about functions and libraries in VHDL with an examples. 	14M	CO1	L
 b) Identify the applications of Opamp and its advantages. UNIT-II Explain the operation of mono stable multi vibrator using 555 timers. Derive the expression of time delay of mono stable multi vibrator with 555 timers. OR a) Analyze the basic principle of successive approximation type ADC b) Restate the operation of Zero Cross Detector and Window Detector. UNIT-III Analyze the operation of CMOS Inverter and its characteristics. OR a) Apply NAND circuit with TTL technology. b) What are the advantages and disadvantages of above? UNIT-IV P. Define encoder and explain with neat structure of 8X3 encoder. Write the VHDL program for standard IC 74x148. OR B. Discuss about functions and libraries in VHDL with an examples. 			
UNIT-II S. Explain the operation of mono stable multi vibrator using 555 timers. Derive the expression of time delay of mono stable multi vibrator with 555 timers. OR A. a) Analyze the basic principle of successive approximation type ADC b) Restate the operation of Zero Cross Detector and Window Detector. UNIT-III 5. Analyze the operation of CMOS Inverter and its characteristics. OR S. a) Apply NAND circuit with TTL technology. b) What are the advantages and disadvantages of above? UNIT-IV 7. Define encoder and explain with neat structure of 8X3 encoder. Write the VHDL program for standard IC 74x148. OR 8. Discuss about functions and libraries in VHDL with an examples.	7M	CO1	L
 Explain the operation of mono stable multi vibrator using 555 timers. Derive the expression of time delay of mono stable multi vibrator with 555 timers. OR a) Analyze the basic principle of successive approximation type ADC b) Restate the operation of Zero Cross Detector and Window Detector. UNIT-III Analyze the operation of CMOS Inverter and its characteristics. OR a) Apply NAND circuit with TTL technology. b) What are the advantages and disadvantages of above? Z. Define encoder and explain with neat structure of 8X3 encoder. Write the VHDL program for standard IC 74x148. OR B. Discuss about functions and libraries in VHDL with an examples. 	7M	CO1	L
 Explain the operation of mono stable multi vibrator using 555 timers. Derive the expression of time delay of mono stable multi vibrator with 555 timers. OR a) Analyze the basic principle of successive approximation type ADC b) Restate the operation of Zero Cross Detector and Window Detector. UNIT-III Analyze the operation of CMOS Inverter and its characteristics. OR a) Apply NAND circuit with TTL technology. b) What are the advantages and disadvantages of above? UNIT-IV C. Define encoder and explain with neat structure of 8X3 encoder. Write the VHDL program for standard IC 74x148. OR a. Discuss about functions and libraries in VHDL with an examples. 			
 expression of time delay of mono stable multi vibrator with 555 timers. OR Analyze the basic principle of successive approximation type ADC b) Restate the operation of Zero Cross Detector and Window Detector. UNIT-III Analyze the operation of CMOS Inverter and its characteristics. OR a) Apply NAND circuit with TTL technology. b) What are the advantages and disadvantages of above? UNIT-IV Define encoder and explain with neat structure of 8X3 encoder. Write the VHDL program for standard IC 74x148. OR Discuss about functions and libraries in VHDL with an examples. 			
OR Analyze the basic principle of successive approximation type ADC b) Restate the operation of Zero Cross Detector and Window Detector. UNIT-III Analyze the operation of CMOS Inverter and its characteristics. OR Apply NAND circuit with TTL technology. b) What are the advantages and disadvantages of above? UNIT-IV Define encoder and explain with neat structure of 8X3 encoder. Write the VHDL program for standard IC 74x148. OR Discuss about functions and libraries in VHDL with an examples. UNIT-V			
 a) Analyze the basic principle of successive approximation type ADC b) Restate the operation of Zero Cross Detector and Window Detector. UNIT-III Analyze the operation of CMOS Inverter and its characteristics. OR a) Apply NAND circuit with TTL technology. b) What are the advantages and disadvantages of above? UNIT-IV C. Define encoder and explain with neat structure of 8X3 encoder. Write the VHDL program for standard IC 74x148. OR B. Discuss about functions and libraries in VHDL with an examples. 	14M	CO1	
 b) Restate the operation of Zero Cross Detector and Window Detector. UNIT-III Analyze the operation of CMOS Inverter and its characteristics. OR a) Apply NAND circuit with TTL technology. b) What are the advantages and disadvantages of above? UNIT-IV Define encoder and explain with neat structure of 8X3 encoder. Write the VHDL program for standard IC 74x148. OR Discuss about functions and libraries in VHDL with an examples. 	014		
UNIT-III Analyze the operation of CMOS Inverter and its characteristics. OR Apply NAND circuit with TTL technology. What are the advantages and disadvantages of above? UNIT-IV Define encoder and explain with neat structure of 8X3 encoder. Write the VHDL program for standard IC 74x148. OR Discuss about functions and libraries in VHDL with an examples. UNIT-V	8M 6M		
 Analyze the operation of CMOS Inverter and its characteristics. OR a) Apply NAND circuit with TTL technology. b) What are the advantages and disadvantages of above? UNIT-IV C. Define encoder and explain with neat structure of 8X3 encoder. Write the VHDL program for standard IC 74x148. OR B. Discuss about functions and libraries in VHDL with an examples. 	OIVI	COT	L
 Analyze the operation of CMOS Inverter and its characteristics. OR a) Apply NAND circuit with TTL technology. b) What are the advantages and disadvantages of above? UNIT-IV 7. Define encoder and explain with neat structure of 8X3 encoder. Write the VHDL program for standard IC 74x148. OR B. Discuss about functions and libraries in VHDL with an examples. 			
OR 5. a) Apply NAND circuit with TTL technology. b) What are the advantages and disadvantages of above? UNIT-IV 7. Define encoder and explain with neat structure of 8X3 encoder. Write the VHDL program for standard IC 74x148. OR 8. Discuss about functions and libraries in VHDL with an examples. UNIT-V	14M	CO2	
 b) What are the advantages and disadvantages of above? UNIT-IV Define encoder and explain with neat structure of 8X3 encoder. Write the VHDL program for standard IC 74x148. OR Discuss about functions and libraries in VHDL with an examples. 			
UNIT-IV Define encoder and explain with neat structure of 8X3 encoder. Write the VHDL program for standard IC 74x148. OR Discuss about functions and libraries in VHDL with an examples. UNIT-V	10M	CO2	L
 Define encoder and explain with neat structure of 8X3 encoder. Write the VHDL program for standard IC 74x148. OR Discuss about functions and libraries in VHDL with an examples. 	4M	CO2	l
 Define encoder and explain with neat structure of 8X3 encoder. Write the VHDL program for standard IC 74x148. OR Discuss about functions and libraries in VHDL with an examples. 			
program for standard IC 74x148. OR 3. Discuss about functions and libraries in VHDL with an examples. UNIT–V			
OR Discuss about functions and libraries in VHDL with an examples.			
 Discuss about functions and libraries in VHDL with an examples. UNIT-V 	14M	CO3	l
UNIT-V	4 4 5 4		
	1411	CO3	
	14M	CO3	I
OR		005	
Write a VHDL program for D flip-flop and S R flip-flop.	14M	CO3	I

		R-17	
C	Code: 7G355	01	
	III B.Tech. I Semester Supplementary Examinations August 202 Antennas and Wave Propagation	<u> </u>	
	(Electronics and Communication Engineering)		
Ν		e: 3 Hou	irs
'	Answer all five units by choosing one question from each unit ($5 \times 14 = 70 N$,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	******	,	
		Marks	со
	UNIT–I		
a)	Define Reciprocity Theorem as applicable to antennas. State the antenna theorem	S	
	and relate them to reciprocity theorem.	7M	
))	The maximum radiation intensity of a 90% efficiency antenna is 200 mW/st. Find the	e	
	directivity and gain (dimensionless and in dB)		
	i) The input power is 125.66 mW		
	ii) Radiated power is 125.66 mW	7M	
	OR		
a)	Derive Radiation resistance of half dipole antenna.	6M	
))	A voltage source of amplitude V= (50+40j) V with source impedance of 50 is	5	
	connected to an antenna having a radiating resistance Rrad=70 , loss resistance	9	
	Rloss=1 and reactance of j25 . Calculate		
	(i) Real power delivered by the voltage source.		
	(ii) Real input power to the antenna		
	(iii) Power radiated by the antenna and		
	(iv) Power dissipated in the antenna. (CO3)	8M	
	UNIT–II		
a)	Find the radiation pattern and phase pattern of 10-element isotropic linear array with		
	an element spacing $d = \frac{1}{2}$ working at a frequency of 12 MHz when it is functioning	-	
	in broadside mode and endfire mode?	7M	
)	Discuss the application of linear array. Explain the advantages and disadvantage c		
	linear array.	7M	
	OR		
a)	What is a parasitic element? Explain when the parasitic element acts as a reflecto		
	and director with the help of proper diagram.	8M	
))	Explain the characteristics of folded dipole.	6M	
	UNIT–III		
	Explain the design parameter of helical antenna with practical design considerations		
	also write the expression for the HPBW, BWFN and axial ratio.	14M	
	OR		
a)	Give various causes of side lobes in the pattern of the dish antennas.	8M	
))	Write short notes on		
	a. Dielectric Lenses		
		6M	

		UNIT–IV	
7.		What is the field strength due to ground wave according to Sommerfeld? What are the	
		factors that are incorporated into this formula?	14M
		OR	
8.	a)	Describe the phenomenon of ground wave propagation.	7M
	b)	A VHF communication link is established with 35 watt transmitter at 90 MHz.	
		Determine	
		a) The distance up to which LOS communication may be possible if the height of the	
		transmitting and receiving antenna are 40 m and 25 m respectively.	
		b) Evaluate field strength at the receiver end.	7M
		UNIT–V	
9.	a)	Discuss about virtual ray path, critical frequency, MUF, LUF, OF, Virtual height and	
		Skip distance.	9M
	b)	Discuss the structure of ionosphere.	5M
		OR	
10.	a)	Prove that refraction index of ionosphere is	
		$\mathbf{n} = \left(1 - \frac{81N}{f^2}\right)^{1/2}$	8M

-

Г

b) Write short notes on Impact of Solar Activity and Multi hop propagation. 6M

	ſ	Hall Ticket Number :			_
	(Code: 7G159	R-1	7	
		III B.Tech. I Semester Supplementary Examinations August	2021		
		Computer System Architecture			
		(Electronics and Communication Engineering)			
		Max. Marks: 70 Answer any five full questions by choosing one question from each unit (5x1 ********	Time: 3 4 = 70		-
		******	Marks	со	Bloc Lev
		UNIT–I			
8	,	Discuss about the error detection using parity bit code with examples	7M	CO1	
k	c)	Explain the different types of computers	7M	CO1	
6	a)	OR With the help of a block diagram, explain the process of addition / subtraction using			
	,	two's complement number	8M	CO1	
k	c)	Differentiate between error detection and error correction. Explain with an example			
	- /	how Hamming code is used for error detection	6M	CO1	
		UNIT–II			
a	a)	Discuss about the arithmetic logic shift unit with examples.	7M	CO1	
k	c)	Differentiate between circular shift and arithmetic shift with proper example. OR	7M	CO1	
6	a)	Describe various computer instruction formats with neat sketches.	7M	CO1	
k	c)	Explain how registers are connected to common bus in the computer with a neat diagram.	7M	CO1	
		UNIT–III			
6	a)	Define Addressing modes? Explain the following addressing modes:			
		 i) Index Addressing mode ii) Immediate Addressing mode iii) Relative Addressing mode 			
		iv) Direct Addressing mode	8M	CO2	
k	c)	Explain the basic organization of microprogrammed control unit	6M	CO2	
	-)	OR Define address acquencing? Discuss	714		
	a) ~)	Define address sequencing? Discuss. Explain the basic computer instruction formats.	7M 7M	CO2	
K)		7M	CO2	
é	a)	Draw a neat block diagram of memory hierarchy in a computer system. Compare			
	~)	the parameters size, speed and cost per bit in the hierarchy.	7M	CO2	
k	c)	Explain the functions of typical input-output interface.	7M	CO2	
	- /	OR		002	
â	a)	Explain ROM and RAM with respect to their block diagrams.	7M	CO2	
k	c)	Define Virtual Memory. Explain the process of converting virtual addresses to			
		physical addresses with a neat diagram.	7M	CO2	
		UNIT–V			
8	a)	Define inter process arbitration? Explain how it is implemented in multiprocessor		_	
		architecture.	7M	CO3	
	c)	Differentiate serial arbitration logic and parallel arbitration logic with neat sketches. OR	7M	CO3	
t	,				
k		Demonstrate the interconnection structure for multiprocessor system. Describe Arithmetic pipeline.	7M	CO3	

Hall Tick	et Number :			
		R-	17	
Code: 70	Il B.Tech. I Semester Supplementary Examinations August	2021]
	Control Systems	2021		
	(Electronics and Communication Engineering)			
Max. Mc Ansv	arks: 70 ver all five units by choosing one question from each unit (5 x 14 = *********	Time: 70 Mar		Jrs
		Marks	со	Bloom: Level
1. a) b)	UNIT–I Classify various types of Control Systems. Find the Transfer function of signal flow graph given below by using Mason's gain formula.	6M	CO1	L2
2.	$R \xrightarrow{(4)}_{(4)} \xrightarrow$	8M	C01	Ľ
3.	$I = \frac{H_3}{G_1 + G_2 + G_3 + F_4}$ $I = \frac{H_2}{H_2 + F_4}$ $I = \frac{I = 1}{I = 1}$ For a unity feedback control system, the open loop transfer function $G(s) = 10(s+2)/s2(s+1)$. Find:	14M	CO1	Lź
	i) position, velocity and acceleration error constants. ii) Steady state error when the input $R(s) = (3/s) - (2/s^2) + (1/3 s^3)$. OR	14M	CO2	L
4. a)	Explain the Routh-Hurwitz criterion to determine the stability of the system.	6M	CO2	L
b)	Examine the characteristic equation $s^4 + 2 s^3 + s^2 + 4s + 2 = 0$ for stability.	8M	CO2	L
5. a)	UNIT-III A system has one open loop pole & two closed loop poles in Right Half of s- plane. Show that the Nyquist plot encircles the (-1+j0) point once in clockwise direction.		CO3	L
b)	Addition of poles to the loop transfer function reduces the closed loop stability of the system. Justify by Nyquist plots.		CO3	L

Code: 7G352

OR a) Explain the term frequency response analysis. 4M L2 6. CO3 b) Show that in Bode magnitude plot the slope corresponding to a quadratic factor is -40 dB/dec. 4M L2 CO3 c Explain with the help of examples b) Minimum phase function ii) Non minimum phase function iii) All pass function L2 6M CO3 UNIT-IV 7. Design a Lag compensator for the unity feedback system whose closed loop transfer function C(s) / R(s) = K / (s (s+4) (s+80) + K) is to meet the following specifications P.M 33°. And Kv 30. 14M L6 CO4 OR 8. Distinguish LEAD and LAG compensators. 14M CO4 L4 UNIT-V a) Obtain the state-space representation of the transfer function system 9. in the controllable canonical form. $G(s) = \frac{s^2 + 3s + 3}{s^2 + 2s + 1}$ 7M CO5 L3 b) Consider the RLC network shown in figure. Write the state variable representation. u(t) \mathbf{C} = 7M L1 CO5 OR 10. a) List the properties of state transition matrix. 6M L1 CO5

b) Construct the state model for a system characterized by the differential equation.
 Y "+ 5y' + 6y = u.
 8M CO5 L5

	На	III Ticket Number :			
			R-17	,	
	Cod	e: 7G351 III B.Tech. I Semester Supplementary Examinations August 20)21		
		Digital Communication	/21		
		(Electronics and Communication Engineering)			
	-	K. Marks: 70 Answer all five units by choosing one question from each unit ($5 \times 14 = 70$)	ne: 3 Marks		
			Marks	1	
			Marks	со	Blooms Level
	、				
1.	a)	Explain about the noise in PCM systems.	7M	1&3	L2
	b)	With a neat sketch describe DPCM concept.	7M	1&3	L1
2		OR			
2.	a)	What are the drawbacks of Delta Modulation (DM)? Describe how these draw backs are eliminated in Adaptive Delta Modulation (ADM).	7M	1&3	L1
	b)	Give the comparison of DPCM and DM with standard PCM.	7M	1&3	L1
	~)			1 a o	
3.	a)	Define and draw the waveforms of ASK, FSK, PSK and DPSK for the data			
	-	sequence 110100110111.	7M	1&3	L1
	b)	Compare the various digital modulation schemes	7M	1&3	L4
		OR			
4.	a)	Draw and explain the operating principle of ASK Modulator.	7M	1&3	L2
	b)	Describe the BPSK modulation technique with the help of a neat diagram.	7M	1&3	L1
		UNIT–III			
5.	a)	Explain the concept of amount of information and its properties.	7M	1&3	L2
	b)	Write a short note on Mutual information and Self information.	7M	1&3	L1
-		OR			
6.	a)	Derive an expression for Shannon- Hartley theorem	7M	1&3	L1
	b)	Explain the following i) Bandwidth and S/N tradeoff ii) Channel Capacity	71/		12
		i) Bandwidth and S/N tradeoff ii) Channel Capacity UNIT–IV	7M	1&3	L2
7.	a)	Apply Shannon–Fano coding procedure for the message ensemble and find			
	u)	the efficiency of the channel $P=[0.4, 0.2, 0.12, 0.08, 0.08, 0.08, 0.04]$	7M	2&3	L3
	b)	Give the matrix description for linear block codes.	7M	2&3	L1
		OR			
8.	a)	Explain the concept of Lempel-Ziv Code.	7M	2&3	L2
	b)	Explain about Error detection and Correction capabilities of Hamming codes.	7M	2&3	L2
		UNIT-V			
9.		What is the use of syndrome? Draw the (n-k) syndrome calculation circuit for (n,			
		k) cyclic code? Explain.	14M	2&3	L3
		OR			
10.		Draw the State diagram, Tree diagram and Trellis diagram for $k=3$, rate=1/3			
		code generated by $g_1(x) = 1+x^2$, $g_2(x) = 1+x$, and $g_3(x)=1+x+x^2$.	14M	2&3	L3

	Cor	de: 7G354	R-17	7	
	CUL	III B.Tech. I Semester Supplementary Examinations August 2	2021		_
		Electronic Measurements and Instrumentation			
		(Electronics and Communication Engineering)			
		T wer any five full questions by choosing one question from each unit (5x14 *********	ime: 3 4 = 70 №		5
			Marks	СО	Bloom: Level
		UNIT–I			
1.	a)	Classify and explain various types of errors in measurement	6M	CO1	L2
	b)	Explain various types of DVMs in measurement	8M	CO1	Le
_		OR			
2.	a)	Explain the working principle of D'Arsonval galvanometer with the help of torque equation	6M	CO1	L2
	b)	Explain about the Dual Slope Integrating type Digital Voltmeter.	8M	CO1	L2
	0)	UNIT-II	OW	COT	Lz
3.	a)	Discuss the basic principle of AF wave analyzer with neat sketch. L2	6M	CO2	L2
	b)	Explain the working of heterodyne wave analyzer with neat diagram.	8M	CO2	L2
		OR			
4.	a)	Discuss the basic principle of Sweep frequency generator with neat sketch.	6M	CO2	L2
	b)	Explain the working of spectrum analyzer with neat diagram.	8M	CO2	L2
		UNIT–III			
5.	a)	Explain the Basic principle of Wheat stone Bridge and derive the expression for unknown resistance.	6M	CO3	L2
	b)	Explain Schering bridge with neat diagram and derive the expression for		003	L2
	0)	unknown Inductance.		CO3	L2
		OR			
6.	a)	Explain the CRT and its applications.	14M	CO3	Le
	b)	Discuss the dual trace oscilloscope with suitable examples			
		UNIT–IV			
7.	a)	Explain the Basic principle of kelvin Bridge and derive the expression for			
		unknown resistance.	6M	CO4	L2
	b)	Explain Wein bridge with neat diagram and derive the expression for unknown parameters'.	8M	004	L2
		OR	OIVI	CO4	
3.	a)	Explain the principle of operation and construction of Q-meter.	6M	CO4	L2
J.	b)	Prepare the principle of operation and construction of AC bridge.	8M	CO4	Le
	~)		•	001	
Э.	a)	Define a transducer. Explain the classification of transducers.	6M	CO5	L2
	b)	Explain the Data Acquisition system with neat sketch.	8M	CO5	L2
		OR			
`	a)	Explain working of strain gauge with neat sketch.	6M	CO5	L2
).	,				