	· · · · - · · · · ·											1				
	Hall Ticket Number :													R-19		
	Code: 19A154T													(-17		
	III B.Tech. I Sen	nest	er Su	Jbb	lem	ento	ary E	İxar	ninc	atior	ns M	arch	n/April 2	2023		
						tura		-								
	Max. Marks: 70				Civi	l Eng	gine	ering	3)				Timo	· 2 1 lou	Irc	
	Answer any five full qu	Jestic	ons b	v ch	oosi	na oi	ne a	uesti	ion fr	om	each	n unit		: 3 Hol 70 Mark		
				,		-	*****		••••	•			(0)		,	
						UNI	r_1							Marks	CO	BL
1.	A beam AB of uniform	secti	on ai	nd 6	m sr			t at t	the e	nds	AII	d I of	- 30 kN/m			
	runs over left half of the				•											
	at right quarter. Deterr	•														
	Draw BMD & SFD													14M	CO1	L1
-			<u>.</u>			OR					•					
2.	A fixed beam AB of len	•			•								••			
	B sinks by 3mm. if E	=2x1(J° N∕	/mm-	² , fin	d the	e tixi	ng N	/lome	ents	and	draw	bending		004	10
	moment diagram.													14M	CO1	LZ
2	Applyze the continuous					UNIT				fthr			oto Drow			
3.	Analyze the continuous SFD & BMD.	s bea	111 51	IOWI		gure	by u	leon		u unit	ee m	omei	nis. Diaw			
	of B & BMB.															
			16 K	N/m			25 KN									
		£	<u>5</u>	m	$\overline{\Delta}$	<u>4 m</u>		<u>6 m</u>	A							
					717				+11	ò				14M	CO2	L2
						OR										
4.	A continuous beam Al															
	each, is fixed at A and															
	and span BC carries a and the reactions. Drav	•									e sup	роп	moments		CO2	12
		v the	0.1							um.					002	LZ
5.	A continuous beam AB	C co	ncict	s of		-		and	BC-4	1m t	he e	nd A	is simply	,		
0.	supported, while the e				•											
	16kN at the centre of					•										
	24kN at a distance of 1			B. fir	nd th	e sup	oport	mor	ment	s an	d dra	w the	e bending			
	moment diagram for the	e bea	ım.											14M	CO3	L2
<u> </u>						OR										
6.	Analyse the beam in slo	-	lenec	lion	meu											
		18 kN				16	5 kN				3 k	N/m				
	4 m		2 m	B	2	2 m	2	m	cN	000			DOD D			
	A	6 m		t		4	4 m		1		4	m	t			
				1				-24-1	1				I.	14M	CO3	L4
_						UNIT										
7.	Two point loads of 120 span from left to right					•						-				
	force and bending mor												uni sheai	14M	CO4	L4
	for of and bornaing mon		liagi		aun		abo	orato	may	(IIII)	n va	400.		I -FIVI	004	L 1
8.	Construct influence line	es for	she	ar fo	rce a	-	endiı	ng m	ome	nt to	the I	beam	n carrying			
	a unit load, also dev	elop	exp	ressi	ons	for 1	maxi	mum	n po	sitive	she	ear f	orce and			
	maximum positive bend	ding r	nom	ent.										14M	CO4	L4
						UNIT	–V									
9.	Derive the expression f	or:														
	(i) Strain energy due to	axial	load	. (ii) St	rain e	energ	y du	ie to	bend	ding.			14M	CO5	L4
10	Ototo and many O	lie -	- ſ'	4 11-	• • • •	OR									00-	
10.	State and prove Castig	liano	s tirs	i the	oren		**							14M	CO5	L4
						4								_		
														Dοσο 1	ot 1	

F	Iall Ticket Number :]
С	ode: 19A152T	7	
	III B.Tech. I Semester Supplementary Examinations March/April 202	23	
	Soil Mechanics		
	(Civil Engineering) Max. Marks: 70 Time: 3	Hour	s
	Answer any five full questions by choosing one question from each unit $(5x14 = 70)$		-
	*****	Marks	со
	UNIT–I		
. a)		714	
h)	soils? List the different types of soils. write what type of soils available in India	7M 7M	1 1
b)	OR	7 111	I
. a)			
	sieve analysis is required?	7M	1
b)			
	4.75mm sieve = 80%, Soil passing 0.075mm sieve =4%, If the particle size distribution curve varies linearly, Classify the soil as per IS classification.	7M	1
		7 101	
. a)		7M	2
b)			
	in 10 min. calculate the time required to run the test for the final head to be at 20		
	cm. if the sample is 6 cm in height and 50 cm ² in cross sectional area, calculate the coefficient of permeability, taking area of stand pipe as 0.5 cm ²	7M	2
	OR	7 101	2
. a)			
	layers. Write the use in soil engineering.	14M	2
	UNIT–III		
. a)	Discuss the basis of the construction of Newmark's influence chart and how is it used.	7M	3
b)		7 101	5
,	footing of 2m diameter subjected to a load of 250 kN. Use Boussinesq's theory.		
	How does the stress at the same point changes if foundation surface is square		-
	footing of size 2m x 2m OR	7M	3
. a)		7M	3
b)	· · · · · · · · · · · · · · · · · · ·	7M	3
,	UNIT-IV		
'. a)	Define the terms compression index, coefficient of consolidation, coefficient of		
	compressibility and indicate their units and symbols	7M	4
b)	In a consolidation test on a soil the void ratio of the sample decreased from 1.25 to 1.10 when the pressure is increased from 200kPa to 400kPa. Calculate the		
	coefficient of consolidation if the $k=8\times10^{-8}$ cm/s	7M	4
	OR		
. a)	Discuss the spring analogy for primary consolidation?	7M	4
b)		7M	4
	UNIT-V Describe direct shear test. Discuss the merits and demerits of direct shear test		
•	over the tri axial shear test.	14M	5
	OR		
. a)	Sketch the stress -strain relationship for dense and loose sand and explain.	7M	5
b)			-
	conditions are these results used for design purposes?	7M	5
	יוף יוף יוף		

Hall Ticket Number :											
----------------------	--	--	--	--	--	--	--	--	--	--	--

Code: 19A153T

Max. Marks: 70

III B.Tech. I Semester Supplementary Examinations March/April 2023

Water Resource Engineering

(Civil Engineering)

Time: 3 Hours

R-19

Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)

UNIT–I

1. List out the methods for river training and explain any four of them.

OR

2. Explain in detail about classification of canals

UNIT–II

3. Explain merits and demerits of different type of dams.

OR

4. Describe the measures for control of earth dams?

UNIT-III

5. Explain in detail about different types of spillways.

OR

6. Calculate the length and thickness of floor for a hydraulic structure with 4m water depth on u/s. Take floor length as 3m on u/s and 20m on d/s of wall. Use Bligh's theory.

UNIT-IV

7. What is the necessity of falls? Write various considerations for location of falls.

OR

8. Design impervious floor for a head regulator for a distributor taking off for a branch canal for the following data.

Discharge of branch canal = 105 cumec

Discharge of distributor = 15 cumec

F.S.L. of branch canal = 118.10 m for u/s, 117.90 m for d/s

Bed width of branch canal = 45 m for u/s, 41 m for d/s

Depth of water in branch canal = 2.5 m both u/s and d/s

F.S.L. of distributory = 117.20 m

Bed width of distributory = 15 m

Depth of water in distributory = 1.6 m

Permissible exit gradient = 1/5

UNIT-V

9. List out the types of canal outlets. Explain about pipe outlet.

OR

10. Explain about design principles of siphon aqueduct

	Hall Ticket Number :			
<u>-</u>	Code: 19A15FT	R-19		
	III B.Tech. I Semester Supplementary Examinations March/Ap	ril 2023		
	Watershed Management			
	(Civil Engineering)			
	Max. Marks: 70 Answer any five full questions by choosing one question from each unit (5x14 ********	ime: 3 Ho 4 = 70 Mari		
	UNIT–I	Marks	со	BL
1. a		7M	CO1	L3
b		7M		L2
	OR			
2. a) Explain the basic objectives of watershed management.	7M	CO1	L2
b) Explain the importance of watershed management with a neat sketch	7M	CO1	L1
2 -	UNIT-II	714	000	14
3.а ь	· ·	7M 7M	CO2 CO2	L1
b) Explain the various measures to control soil erosion. OR	7 101	002	L2
4. a		7M	CO2	12
b	· ·	,	002	
	(i) Furrowing (ii) ploughing (iii) rock fill dams.	7M	CO2	L2
F -		714	000	
5.a		7M	CO3 CO3	L1
b) What are the benefits of Rain water Harvesting OR	7 101	003	LZ
6. a		7M	CO3	13
b. u		7 M	CO3	
D		,	000	
	UNIT-IV			
7. a) What is meant by artificial recharge of water?	7M	CO4	L2
b) Write the advantages of artificial recharge of water	7M	CO4	L1
	OR			
8.	Discuss the role of artificial recharge and percolation tanks in the groundwa		CO4	1.2
	harvesting	14M	CO4	L3
	UNIT-V			
9. a		7M	CO2	L2
b		7M	CO2	L2
	OR			
10.	What are the objectives and salient features of sustainable agriculture	14M	CO5	L3

						P_10
Hall Ticket Number :						

Code: 19A151T

III B.Tech. I Semester Supplementary Examinations March/April 2023

Basic Reinforced Concrete Design

(Civil Engineering)

Max. Marks: 70

	PART-A			
	Answer any one question carry's 28 marks			
1.	Design a simply supported roof slab for a room of 4.5 m x 6 m measuring from inside. Thickness of the wall is 300 mm. The superimposed load exclusive of self-weight is 3. 5 kN/m ² . The slab may be assumed to be simply supported on all four edges with corners held down. Use M20 mix and Fe415 grade steel.	Marks 28M	со З	вL 3
2.	Design an isolated footing of uniform thickness of a RC column bearing a vertical load of 600 KN and having a base of size 500x500 mm. The safe bearing capacity of soil may be taken as 120 KN/m2. Use M_{20} concrete and Fe ₄₁₅ steel.	28M	5	3
	PART-B			
	Answer any <i>three</i> questions each question carry's 14 marks			
3. a)	Explain stress strain curves for concrete and steel.	8M	1	1
) b)	Define Partial safety factor, Characteristic strength and Characteristic load.	6M	1	1
4.	An RC beam of rectangular section 350 mm x 550 mm effective depth is reinforced with 4 bars of 20 mm diameter out of which 2 bars are bent up near the support section. whereas factored shear force of 400 kN is acting on the beam. Use M_{20} grade concrete and Fe ₄₁₅ steel. Design the suitable shear reinforcement.	14M	2	3
5.	Design a beam of span 7m, subjected to UDL of intensity 4KN/m ² . Use M 30 grade concrete and HYSD bars. Assume any required data.	14M	3	2
6.	Design a short column to carry an axial load of 1600KN. It is of 4m long. Effectively held in position but not in direction at both ends. Use M20 grade concrete and Fe415 steel.	14M	4	2
7.	Check for the limit state of deflection using empirical method for the simply supported rectangular beam with following data. Ast = 4 - #20, Asc = 2-#16, Beam		_	0

Time: 3 Hours

	ŀ	Hall Ticket Number :															
	С	code: 19A15BT	J]		R-19		
	•	III B.Tech. I Serr	neste	er S	upp	lem	ento	ary E	Exan	nino	tion	is M	arch	/April	2023		
	Prestressed Concrete																
	,	Max. Marks: 70				(Civi	l Eng	gine	əring	J)				Tim	e: 3 Ho	i irc	
		Answer any five full qu	estic	ons b	by ch	ioosi	-	ne q *****	uesti	on fr	om e	each	unit (
							UNI	Г—I							Marks	CO	BL
1.		Elaborate the development of the prestressed concrete over the years.													14M	CO1	L2
2.	OR a) Define prestressing technique. Mention the differences between prestressed																
	.,	concrete and reinforc		•				• •					p		7M	CO1	L3
	b)) Explain the behavior of the prestressed concrete and reinforced cement concrete.											7M	CO1	L2		
_					_		UNIT			_		-	_				
3.		Discuss the Loss of due to shrinkage and	•			•		onec	d and	l pos	t ter	nsion	ed m	embers		CO2	12
			0.00	γ ρ 0.	00110		OF	ł								002	
4.		A pre-tensioned bea wires of 7 mm diam located 100mm from	neter	initi	ally	stres	sed	to 1	000	N/mr	n² w	/ith t	heir c	entroic	ł		
		wires with the following kN/mm ² , f _{ck} =45N/mm	•			icien		6, To				•				CO2	L4
5.		Obtain the expression	on fo	or th	ne ex		-		stress	ses i	n st	raigh	t, bei	nd and			
		parabolic tendons.					OF	2							14M	CO3	L2
6.		A prestressed memb member = 300 mm x			-		eters	; Cro									
		L = 10 m, carries a u the mid span section.	dl of												f	CO3	L3
				_			UNIT					_					
7.		Explain the design section according to t	-			ar		-	ar pr	estre	ssec	l cor	ncrete	beam		CO4	L2
8.		A prestressed concre	te be	eam	of se	ectior	OF 1 300		x 60	0 mr	n dee	ep is	prest	ressed			
		by 2 post tension cat The span of the bear of support section. Us	oles c n is 1	of are 10 m	ea 60 n. if fo	00 m ck =4	m² e	ach i	nitial	ly Sti	esse	ed to	1600	N/mm ²)	CO4	L3
		of support section. Of		104	.5 00		UNIT	-v							14101	004	LJ
9.	a)	Explain the term						-									
		i) End blocks ii) Stro							nissio				_		6M	CO5	L2
	b)	Write the steps involv	ed ir	1 the	desi	gn o	f end OF		ks b	y Gu	yon's	s met	hod.		8M	CO5	L2
10.		The end block of pos	t ten	sion	ed co	oncre	_		300 i	mm >	300) mm	is su	bjectec	ł		
		to a concentric and 1100mm ² . Discuss ar	-	-					-	-		-			a 14M	CO5	L3