\square

Code: 19A151T

III B.Tech. I Semester Supplementary Examinations Nov/Dec 2023

Basic Reinforced Concrete Design

(Civil Engineering)
Time: 3 Hours
Max. Marks: 70
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

PART-A
Answer any one question from the following

1. A simply supported RCC beam carries an UDL of $30 \mathrm{KN} / \mathrm{m}$ over an effective span of 6.5 m . The overall size of the beam has to be restricted to $300 \times 580 \mathrm{~mm}$. Design the mid span section of the beam for flexure. Use M_{20} concrete and fe ${ }_{415}$ steel.
2. Design a footing subjected to a column load of 1000 KN of size $400 \mathrm{~mm} \times 400 \mathrm{~mm}$. The safe bearing capacity of soil is $200 \mathrm{KN} / \mathrm{m}^{2}$. Use M20 grade concrete and Fe_{415} steel. The column has 4 no's of 25 mm bars.

PART-B

Answer any three questions from the following ($\mathbf{3 \times 1 4} \mathbf{= 4 2}$ Marks)
3. Determine the moment of resistance by limit state method for a simply supported beam of size $350 \times 400 \mathrm{~mm}$ and a span of 6 m , which is subjected to UDL of intensity $5 \mathrm{KN} / \mathrm{m}$. Use M_{25} concrete and Fe 415 steel. Assume any required data
4. Estimate the development length in both tension and compression zones of a beam size $300 \times 400 \mathrm{~mm}$ with the area of steel in compression and tension is $456 \mathrm{~mm}^{2}$ and $345 \mathrm{~mm}^{2}$. Use M_{20} grade concrete and mild steel bars. Assume any required data.
5. A floor consists of 150 mm thick slab monolithically constructed with 300 mm wide beams spaced at $3.6 \mathrm{~m} \mathrm{C} / \mathrm{C}$ spacing. The effective span of beams is 5 m and the slab is subjected to a superimposed load of $5 \mathrm{KN} / \mathrm{m}^{2}$. Design an intermediate beam by using M_{20} concrete and Fe_{415} steel.
6. Design the reinforcement in a column of size $400 \mathrm{~mm} \times 600 \mathrm{~mm}$ subjected to an axial load of 2000 kN under service dead load and live load. The column has an unsupported length of 4.0 m and effectively held in position and restrained against rotation in both ends. Use M 25 concrete and Fe 415 steel.
7. A cantilever beam of span 4 m and size $=300 \times 600 \mathrm{~mm}$, is subjected to a Maximum bending moment, $\mathrm{M}=160 \mathrm{kNm}$. Under service conditions due to UDL. The beam is reinforced with $4-\# 20$ on the tension face at an effective cover=50mm. M20 and Fe 415 steel. Compute deflection due to short and long term effects.
\square

Code: 19A154T

III B.Tech. I Semester Supplementary Examinations Nov/Dec 2023

Structural Analysis

(Civil Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

Marks CO BL

UNIT-I

1. A fixed beam $A B$ of span 6 m is carrying a u.d.l of $4 \mathrm{t} / \mathrm{m}$ over the left half of the span. Find the fixing moments and support reactions. Draw BMD.

14M CO1
L1

OR

2. Derive slope and deflection for a fixed beam carrying an eccentric point load. 14M CO1 L2

UNIT-II

3. Analyze the continuous beam shown in figure by Clapeyron's theorem of three moments. Draw BMD and SFD

4. Analyze the continuous beam shown in figure by theorem of three moments. Draw SFD \& BMD.

UNIT-III
5. Determine the support moments for the continuous beam shown in figure and draw the B.M diagram. Analyse in slope-deflection method

UNIT-IV

7. a) Define influence line for shear force and bending moment.
b) A girder of span 7 m is loaded with an UDL of length 3 m of intensity $80 \mathrm{kN} / \mathrm{m}$, located as its left end is 1 m from left end of the girder. Find the shear force at a section distant 3 m from left end

14M CO4 L4
OR
8. Draw the influence lines for reactions at supports A, B, C and bending moment at support B for the beam. Find their maximum values when a travelling load of 60 kN per metre may cover any part of the span.

14 M CO4 L4

UNIT-V

9. Write short notes on:
(a) Static indeterminacy.
(b) Castigliano's theorem for indeterminate structures

14M CO5 L5

OR

10. A lamp post $A B C$ consists of a vertical part $A B$ of length L and A horizontal part $B C$ of length $L / 8$ the lower end A of the post being fixed. It carries a point load P at C. Find the vertical and horizontal components of the deflection of C. Assume uniform flexural rigidity El.
