Н	all Ticket Number :	R-19		
Co	de: 19A152T III B.Tech. I Semester Supplementary Examinations Nov/Dec Soil Mechanics	2022		
	(Civil Engineering)	ne: 3 Ho = 70 Mar		
		Marks	СО	BL
A -)	UNIT-I			
1. a)	Describe the procedure to determine field dry density of soil by core cutter.	7M	1	2
b)	A compacted cylindrical specimen 50 mm diameter 100 mm length is to be prepared from oven dry soil. If the specimen is required to have a water content of 15% and percentage air		·	-
	voids of 20%. Calculate mass of a soil and water required for the preparation of the sample. Take G=2.69.	7M	1	3
	OR		·	
2. a)	Write short notes on the method of determination of shrinkage limit of soil.	7M	1	1
b)	A soil has liquid limit and plastic limit of 47% and 33% respectively. If the volumetric shrinkages at the LL and PL are 44% and 29%. Determine the shrinkage limit.	7M	1	3
3.	Describe with a neat sketch how you will determine the coefficient of permeability of a clay sample in the laboratory			
	and derive expression.	14M	2	2
	OR			
4. a) b)	Explain the properties and practical applications of flow net. Determine the seepage discharge through the foundation of an earth dam if the flow net has 10 equipotential drops and 3.5 flow channels. The length of the dam is 300 m and the coefficient of permeability of the soil is 2.5×10^{-14} cm/s. The level of water above the base of the dam 12 m on U/s and 4	7M	2	1
	m on D/s.	7M	2	3
	UNIT–III			
5. a)	Derive an expression for the vertical stress at any point due to point load.	7M	3	2

	b)	A water tank is supported by the ring foundation having outer diameter of 10 m and inner diameter of 7.5 m. The ring foundation transmits uniform load intensity of 160 kN/m ² .		21	
		Compute the vertical stress at a depth of 4m and 7m, below the centre of ring foundation using Boussinesq's analysis. OR	7M	3	3
6.	a)	Write the assumptions in Boussinesq's theory of stress distribution.	7M	3	1
	b)	The four legs of a transmission tower form in plan a square of side 4m and together carry a total load of 200kN. Compute the increase in vertical stress at a depth of 3m vertically below a Leg. Use Boussinesq's theory.	7M	3	3
		UNIT-IV			
7.	a)	Define Pre-consolidation pressure. Describe the procedure for determining the Pre-consolidation pressure from the results of one dimensional consolidation test.	7M	4	2
	b)	A clay bed has a thickness of 4m. The effective overburden pressure at the middle of the clay layer is 100 kN/m ² . Determine the change in the thickness of clay layer, if effective overburden pressure is increased by 40% of initial overburden pressure. Assume the following date : Natural water content = 36% ; Liquid Limit = 60% and $G_s = 2.68$ OR	7M	4	3
8.		Stating the assumptions, derive Terzaghi's one dimensional			
		consolidation equation.	14M	4	2
9.	\sim	UNIT-V Write brief notes on Mohr's circle, unconfined compression			
Э.	a)	test	7M	5	1
	b)	Classify tests based on drainage conditions. Explain how pore pressure variation and volume change take place during these tests	7M	5	2
		OR			
10.	a)	Differentiate between direct shear test and triaxial shear test.	7M	5	2
	b)	In a drained tri axial compression test, a saturated specimen of cohesion less sand fails under a deviator stress of 535kPa when the cell pressure is 150kPa. Find the effective angle of shearing resistance of sand by analytical method.	7M	5	4
		END		J	·

Hall Ticket Number : R-	19		
Code: 19A154T III B.Tech. I Semester Supplementary Examinations Nov/Dec 2022 Structural Analysis (Civil Engineering)			
Max. Marks: 70 Answer any five full questions by choosing one question from each unit (5x14 = 70 ********			
UNIT-I	Marks	со	
A fixed beam of span 6 m carries point loads 20 kN and 15 kN at distances 2 m and 4 m from the left end. Find the fixed end moments and the reactions at the supports. Draw BMD & SFD.	14M	1	
OR			
A fixed beam of length 6m carries point loads of 160KN and 120KN at a distance of 1.5m and 3.5m from left end A. find the fixed end moments and the reactions at the supports. Draw B.M and S.F diagrams.	14M	1	
UNIT-II Analyze the continuous beam shown in figure by theorem of three moments. Draw SFD & BMD.			
$A = \begin{bmatrix} 20 \text{ kN/m} & B & 2m & 2m \\ 6 \text{ m} & m & 4m \\ 0 \end{bmatrix} \begin{bmatrix} 40 \text{ kN} \\ 2m & 2m \\ 1 \end{bmatrix} C$	14M	2	
OR			
A continuous beam ABCD of length 15m rests on four supports covering 3 equal parts spans and carrying a uniformly distributed load of 1.5 KN/m length. Calculate the moments and reactions at the supports. Draw S.F and B.M diagrams also.	14M	2	
A beam ABC 9m long consists of spans AB and BC of lengths 6m and 3m respectively. It is fixed at the end A and simply supported at B and C. the span AB carries a UDL of 10 kN/m while the span BC carries a UDL of 20kN/m. Determine the reactions and moments at the supports and draw B.M diagram.	14M	3	
Determine the support moments for the continuous beam shown in figure and draw the B.M diagram. Analyse in Moment Distribution method			
$A \xrightarrow{4 \text{ m}} 2 \text{ m} B 2 \text{ m} 2 \text{ m} C \xrightarrow{3 \text{ kN/m}} 4 \text{ m}$			
	14M	3	
UNIT-IV Five wheel loads 15kN, 25kN, 18kN, 21kN and 29kN spaced at 2m interval roll on a girder of span 25m from left to right with the 15 kN load leading. Find the absolute maximum bending moment for the girder. OR	14M	4	
Two wheel loads 200kN and 80kN spaced 0.8m apart roll on the girder. i) Find the maximum positive and negative shear force at the section C. ii) Find the maximum positive and negative bending moments that can occur.	14M	4	
UNIT-V			
Write short notes on: (a) Indeterminate structures. (b) Uses and application of influence lines OR	14M	5	
Find the deflection and slope at quarter span of simply supported beam of span L and loaded with uniformly distributed load of intensity w per unit length throughout the span.	14M	5	

п	all Ticket Number :	
Co	ode: 19A153T	
	III B.Tech. I Semester Supplementary Examinations Nov/Dec 2022	
	Water Resource Engineering	
	(Civil Engineering)	
	1ax. Marks: 70 nswer any five full questions by choosing one question from each unit (5x14 = 70 Marks	-
, ,	*******	•
	UNIT–I	Mar
1.	Explain in detail about types of canal lining	14
	OR	
2.	Design an irrigation canal to carry a discharge of 5 Cumec. Assume N= 0.0225, m=1.0	
	and B/D=3.24.	14
c	UNIT-II	
3.	Derive principal stresses and shear stresses for elementary profile of gravity dam with a neat sketch.	14
	OR	-
4.	Describe the causes of failures of earth dams with net sketches	14
	UNIT–III	
5.	Describe Bligh's creep theory.	14
	OR	
6.	What is the importance of exit gradient? How would you check the exit gradient?	14
7.	UNIT-IV Using the following data design Sarda type fall. Neglect thickness of floor.	
	Full supply discharge 45 cumec both u/s and d/s.	
	Full supply level 118.3 m for u/s, 116.8 m for d/s.	
	Full supply depth 1.8 m both u/s and d/s.	
	Bed width 28 m both u/s and d/s.	
	Bed level 116.50 m for u/s, 115.00 m for d/s.	
	Drop 1.5 m.	14
8.	OR Describe the design principles of straight glacis fall	14
0.	Describe the design principles of straight glacis fall.	14
	UNIT-V	
	Explain about open flume outlet and orifice semi module outlet	
9.	Explain about open nume outlet and onnice semi module outlet	14
9.	OR	14

	Hall Ticket Number :	R-1	9	
C	Liode: 19A15FT III B.Tech. I Semester Supplementary Examinations Nov/Dec	~ 2022		
	Watershed Management	, 2022		
	(Civil Engineering)			
I		ime: 3	Hours	
A	Answer any five full questions by choosing one question from each unit (5x1)	4 = 70 1	Marks)	
	*****	Marks	СО	В
	UNIT–I			
a)	What do you mean by watershed management?	7M	CO1	
b)	What are the important watershed factors to be considered in watershed			
	management	7M	CO1	
	OR			
a)	Justify why watershed development programme is necessary	7M	CO1	
b)	Explain how integrated and multi-disciplinary approach will help watershed			
	management.	7M	CO1	
	UNIT–II			
a)	Write a short note on Reclamation of saline and alkaline soils	7M	CO2	
b)	Explain social forestry and afforestation	7M	CO2	
	OR			
a)	What is land use and land cover?	7M	CO2	
b)	Explain Universal soil loss equation (USLE) in detail	7M	CO2	
	UNIT-III			
a)	Write a short note on land grading operation.	7M	CO3	
b)	What are the basic steps to begin the process of Rain Water Harvesting?	7M	CO3	
,	OR			
a)	What are the different means by which you harvest rainwater? Use neat			
,	sketches wherever necessary.	7M	CO3	
b)	Discuss in detail about water harvesting structures.	7M	CO3	
	UNIT-IV			
	What do you understand by artificial recharge? Explain	14M	CO4	
	OR			
a)	Distinguish between farm ponds and percolation tanks	7M	CO4	
b)	Discuss different types of check dams	7M	CO4	
,				
	UNIT-V			
	Give a detailed explanation on micro farming	14M	CO5	
•	OR		000	
	Write a brief note on the cropping pattern	14M	CO5	
1	***	1-111	000	

	Ha	all Ticket Number :			
	Co	de: 19A151T	-19		
	•••	III B.Tech. I Semester Supplementary Examinations Nov/Dec 20	22		
		Basic Reinforced Concrete Design			
		(Civil Engineering)			
		Time 15 swer any five full questions by choosing one question from each unit	: 3 Hou	-	
	7.11		0 Mark	5]	
		PART-A			
		Answer any one question carry's 28 marks			
4		asign the two way alph of open Even subjected to an impressed load of 1.51/N/m2	Marks	CO	BL
I		esign the two way slab of span 5x6m subjected to an imposed load of 15KN/m ² . The Two adjacent edges are discontinuous. Use M ₂₅ concrete and fe ₄₁₅ steel. Draw			
		e cross-section with reinforcement details.	28M	3	3
		OR			
2		esign a square footing for a short axially loaded column of size 300mm x 300mm			
		rrying 630kN load. Use M_{20} grade concrete and Fe ₄₁₅ steel. SBC of soil is	0014	_	0
	18	0kN/m ² . Sketch the details of reinforcements.	28M	5	3
		PART-B			
		Answer any three questions			
		Each question carry's 14 marks			
3.	a)	What is meant by limit state? Discuss different limit states to be considered in reinforced concrete design	10M	1	1
	b)	List out the assumptions made in limit state method.	4M	1	1
4.		Design the torsion reinforcement for a beam of size 300X600mm in size is			
		subjected to shear force 70KN,torsionalmoment 50KNm and bending moment 24KNm.Consider 0.3% of tension steel is provided, M 20 grade concrete and			
		mild steel bars. Assume any required data.	14M	2	3
				-	Ũ
5.		Design a rectangular column of 4.5 m unsupported length, restrained in			
		position and direction at both the ends, to carry an axial load of 500 kN and			
		moment 310KNm. Use M20 grade concrete and Fe415 steel.	14M	4	2
6.		Check for the limit state of deflection using empirical method for the T beam			
•		with following data. Ast = 1600 mm^2 ; Asc= 900 mm^2 , bw= 300 mm , d= 400 mm ,			
		bf= 900mm; Fe415; Span= 8m and continuous	14M	5	2
7	c)	Differentiate the working stress method and limit state method	1014	А	4
7.	a) b)	Differentiate the working stress method and limit state method. Define neutral axis and lever arm.	10M 4M	1 1	1 1
	5)	***END***	-+1VI	I	I

END

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES, RAJAMPET (AUTONOMOUS)

II B.Tech II Semester <u>CE</u> Mandatory Course Supplementary Examination 19AC45T-Essential of Indian Traditional Knowledge

	H.T. No:-											-			
	Date:-26-1	2-2022										Dur	ation:	3Hrs.	
	Answer an	y five qı	Jesti	ons	fron	n the	e foll	owi	ng.			5X2	0=100	Marks	
													Marks	Course Outcomes	Bloom's Level
1	Explain the in they contribut	•							Herit	age	and h	low	20M	1	2
2	Bring out sor relevance in the			•		ntior	ns of	Ind	ian	sage	s and	its	20M	3	2
3	Bring out the four Up-vedas	0	ance	of V	/eda	.s, an	ıd br	iefly	exp	olain	types	s of	20M	2	2
4	Discuss the c importance in				ures	of I	ndia	n wa	ay o	f lif	e and	its	20M	1	2
5	Explain the inhealthy in the	•		•		eda a	and `	Yoga	a to	keep	o one	self	20M	3	1
6	Discuss in det a) Classical D			0	0			dian	art f	orms	5		20M	3	2
7	Write the rel Technical wor		of S	cien	ce a	nd S	Spiri	tuali	ty ir	n the	e curr	rent	20M	3	1
8	Briefly explain present Techn			nce	of S	Scien	ce a	nd S	Spiri	tuali	ty in	the	20M	3	1

		Hall Ticket Number :	•	1	
		Code: 19A15BT	9		
		III B.Tech. I Semester Supplementary Examinations Nov/Dec 2022			
		Prestressed Concrete			
		(Civil Engineering) Max. Marks: 70 Time: 3	Hours		
		Answer any five full questions by choosing one question from each unit (5x14 = 70 N ********			
		UNIT–I	Marks	со	BL
1.		Elucidate the need for high strength steel and high strength concrete in prestressed			
		concrete.	14M	1	2
2		OR Discuss in detail about different post-tensioning anchorages with neat sketches.			2
2.			14M	1	2
		UNIT–II			
3.	a)	Discuss the Loss of pre-stress in pre-tensioned and post-tensioned members due to elastic shortage of concrete.	7M	2	2
	b)	Explain the Relaxation of steel and its influence in the strength of the prestressed concrete member.	7M	2	2
4		OR Define ereen Mention the factors influencing the ereen of new members	714	0	~
4.	a) b)	Define creep. Mention the factors influencing the creep of psc members. A prestressed concrete beam of rectangular section 120mm wised and 350mm deep is	7M	2	2
	U)	prestressed concrete beam of rectangular section 120mm wised and 550mm deep is prestressed by 6 wires of 6 mm diameter, provided at an eccentricity of 55mm, the initial stress in the iwres is 1100 N/mm ² . Find the loss of stress in steel due to creep of concrete, take moudulus of elasticity as $2x10^6$ N/mm ² and E _c = $3x10^4$ N/mm ² , = 1.50	7M	2	4
		UNIT–III			
5.		A prestressed concrete beam of section 120 mm wide by 300 mm deep is used over an effective span of 6 m to support a uniformly distributed load of 4 kN/m, which includes the self- weight of the beam. The beam is prestressed by a parabolic cable carrying a force of 180 kN and located at an eccentricity of 50 mm. compute the extreme stress at central span sections and end section. OR	14M	3	3
6.		Sketch the resultant stress at the top and bottom of the mid span section of a pre-			
		tensioned member with the following data. Cross-sectional dimensions of the member = 300 mm x 650 mm, $A_p = 220 \text{ mm}^2$,			
		$f_{ck} = 40 \text{ N/mm}^2$, $f_p = 1550 \text{ N/mm}^2$, $L = 6.2 \text{ m}$, udl = 12 kN/m.	14M	3	3
				-	C
7.	a)	Define i) Kern ii)Pressure line and thrust line	4M	4	1
	b)	Mention the cable profiles Discuss the effect of Tendon profile on deflection of PSC beam	10M	4	2
0		OR	4 4 5 4	4	0
8.		Explain the design procedure of I-section according to IS code.	14M	4	2
9.		Explain in detail about the analysis of end block by Magnel method.	14M	5	2
10.		Write short notes on:			
		i) Short term deflection. ii) Long term deflection.			

Page **1** of **1**